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Abstract

This paper presents a segmentation technique for flexible pipes in deep underwater
environments using low-light monochrome cameras. The technique relies on an alter-
nating pattern of black and white regions marked over the pipe and is divided into three
stages: a pre-processing stage for image noise-reduction; a multi-level topological bi-
narization for collecting pipe region candidates; and a backtracking search constrained
by inherent pipe characteristics for segmenting its regions. The proposed technique has
been tested using video sequences from a real offshore operation and succeeded in seg-
menting 95.29% of the frames, while local adaptive thresholding methods achieved, at
best, a rate of 68.49%.

1 Introduction
Oil and gas are some of the most important energy sources in the modern world. These re-
sources can be produced in either continental or offshore fields. The offshore oil production,
in particular, involves additional challenges since it requires a further effort to reach the ex-
traction point — the seabed. The offshore oil extraction is a complex operation that requires
specialized professionals and expensive equipment. The risks involved are high and minor
mistakes may result in incalculable losses.

Offshore operations are usually conducted in deep underwater environments (at times
surpassing 1000 m in depth). Consequently, ROVs (Remotely Operated Vehicles) assist most
parts of the operations [20]. There is no natural illumination in this kind of environment and
the only light sources available are the ones attached to the ROV. Since illumination is scarce,
ROVs are equipped with special underwater camera systems, which can capture images in
low-light conditions (10−3 lux). These images are monochromatic, low resolution (usually
NTSC or PAL standards), and tend to be blurred due to the underwater light scattering.
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Figure 1: Alternating black and white pattern used to mark the pipe. White marks must have
a length of about a and the black ones of about a/2. The first and last marks must be black
and have a length of about a (as it delimits the region of interest).

Special flexible pipes are used to transport oil and gas. They are affected by permanent
oscillation caused by ocean currents, and, if the oscillation reaches a critical amplitude, the
pipes may fracture [9]. In order to mitigate the risks involved in such situations, computer
vision systems might be used as underwater monitoring tools.

This paper presents a novel segmentation technique for flexible pipes in deep underwater
environments. It is the initial step towards the development of a monitoring tool based on 3D
reconstruction. Since the pipe is a non-rigid object, a calibrated stereo rig is to be used, which
requires that feature points are extracted and matched across both images. The segmentation
problem is addressed by finding regions of the pipe denominated vertebrae. For improving
the technique robustness, considering the low quality of the available images, it relies on
an alternating pattern of white (a vertebra) and black regions marked on the pipe. Results
show that the proposed technique can segment pipes even under harsh conditions such as:
low contrast between pipe and background; uneven illumination of the pipe; and high level
of noise due to floating particles. In particular, the proposed binarization technique achieves
valuable results without any parameter, whereas state-of-the-art techniques did not achieve
the same quality even after their parameters were fine-tuned for each condition.

2 Related Work

In the literature of computer vision and pattern recognition, underwater pipe detection and
tracking techniques have been widely investigated for surveillance, inspection, and main-
tenance tasks. Such techniques are commonly applied to guide AUVs (Autonomous Un-
derwater Vehicle), and utilize sonars and optical devices. Whereas sonars are powerful for
searching large areas, but expensive and susceptible to noise; optical devices face problems
like uneven illumination and unwanted artifacts on images [7].

For optical-based techniques, the most common approach involves detecting the pipe
boundaries in a scenario where the optical axis of the camera is parallel to the pipe. Pipe
boundaries are detected by extracting all edges from image and selecting pairs of parallel
lines [1, 11, 12, 22]. The boundaries are approximated by straight lines because the pipe has
small curvature, such as in [5], where two multilayer perceptrons are used to detect them.
To track the movement over time, the pipe is redetected in the next frame and its position is
composed with the position in the previous frames using Kalman filter. In [18], a machine
learning technique for pipe detection in factories is proposed, employing user interaction
and segmenting the pipe by characteristics like boundaries, color, and shades. Although
the presented works are able to segment pipes from images, they would not succeed in the
scenario of this paper owing to the flexibility of the pipe.

Concerning the proposed binarization algorithm, there are global and local threshold-

Citation
Citation
{Li} 2012

Citation
Citation
{Horgan and Toal} 2006

Citation
Citation
{Antich and Ortiz} 2003

Citation
Citation
{Narimani, Nazem, and Loueipour} 2009

Citation
Citation
{Ortiz, Sim{ó}, and Oliver} 2002

Citation
Citation
{Zhang, Zeng, Wan, and Qin} 2012

Citation
Citation
{Foresti and Gentili} 2000

Citation
Citation
{Thirion, Bascle, Ramesh, and Navab} 2000



PESSOA ET AL.: FLEXIBLE PIPES SEGMENTATION IN UNDERWATER ENVIRONMENTS 3

ing techniques, both of which achieve analogous results. The global ones may evaluate the
threshold value in many ways, such as using histograms, entropy, mean, and variance [16].
Otsu’s algorithm [13] chooses a threshold that maximizes the variance between the fore-
ground and background. However, global approaches are not robust to uneven illumination.
Locally adaptive thresholding techniques classify pixels by examining their neighborhood,
established by a window size given as parameter. Bradley [3] uses the mean of the neighbor-
hood to classify each pixel, while Sauvola [15] uses the mean and the variance. Bernsen [2]
defines the threshold as the mean of the minimum and maximum intensity of the window.
All of these techniques are very sensitive to their input parameters, and a slight variation in
them may cause any of the following issues: (i) connection between segmented regions; (ii)
noise in the regions surrounding the pipe; (iii) or holes inside the segmented regions. The
proposed binarization technique does not produce such undesirable artifacts and does not
require an strenuous job to parameterize it.

Finally, it is worth mentioning the techniques for detecting and segmenting vertebral
column in X-ray [21], CT (Computed Tomography) [6, 8], and MR (Magnetic Resonance)
imaging [10, 14]. Despite these techniques are also interested in segmenting a sequence
of structured elements, there are several aspects that makes their objectives unlike the one
targeted by this paper. Firstly, most of them are intended to scenarios with relaxed time re-
strictions. The usual running-time per image reported by them are of minutes or even tens
of minutes. Secondly, they usually rely on typical characteristics of the human vertebral col-
umn (such as the sacrum, the intervertebral disks, and the articulation to ribs of the thoracic
vertebrae), which are not present in the underwater scenario. Lastly, user intervention are
required in some stages (such as for initializing and training).

3 Scenario
The purpose of the developed segmentation technique is to provide feature points that will be
posteriorly matched across a pair of stereo images. However, since flexible pipes are often
coated with plastic of uniform color, it is almost impossible to distinguish feature points
along its length. In order to overcome this, the pipe is marked with an alternating black and
white pattern (Figure 1). This can be easily achieved by using colored adhesive tapes or by
painting the pipe surface. Since the region of the pipe that shall be monitored is short (about
15 m, which results in 29 markings for a 35 cm diameter pipe), this manual task is affordable.

The proposed technique searches for the pipe’s vertebrae (the white markings). In order
to be visible, there must be a minimum contrast between the vertebrae and the background,
which leads to the final requirement: the image background must be darker than the verte-
brae. This is naturally fulfilled since the environment is poorly illuminated.

4 Proposed Technique
The technique consists of three stages. Firstly, the input image is pre-processed to reduce
noise. Secondly, the pre-processed image is binarized by the proposed Multi-level Topo-
logical Binarization technique, resulting in a binary image which highlights, in white, every
region that is potentially a pipe vertebra (those regions are henceforth referred to as blobs).
Lastly, the pipe is segmented by finding the best sequence of blobs that fulfill a set of restric-
tions inherent to a marked pipe.
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Figure 2: Input image (a) after applying a bilateral (b) and a Gaussian filter (c). Second row
exhibits the images in details. The bilateral filter parameters are kernel size 30, sigma color
10, and sigma spatial 10. The Gaussian filter parameters are kernel size 13 and sigma 2.7. In
(d), the plot of the detailed image in (c) exhibiting the peaks produced by the pipe marks.

4.1 Pre-processing

Since the images captured by the ROV cameras are subject to a great amount of noise (Figure
2a), two blurring filters are used before their binarization. First, a bilateral filter [19] is used
to remove small particles floating around, while preserving the vertebrae’s edges (Figure 2b).
Finally, a Gaussian filter is used to uniformly smooth the images (Figure 2c).

4.2 Multi-level Topological Binarization

The proposed binarization technique was conceived to be robust to uneven illumination. This
feature is important because the ROV’s lamps cannot evenly illuminate the scene. Another
interesting feature of the technique is that it tends to generate disconnected vertebrae — even
close vertebrae separated by a shallow valley will end up disconnected. It is an important
feature because the searching stage relies on it. Besides, this is something that the usual
binarization techniques do not achieve.

The basic idea behind the technique consists in finding peaks in the pre-processed image.
Observe that whenever a pipe vertebra appears in the image it will produce a peak (Figure
2d). So, one can assume that, by collecting every peak from the pre-processed image, every
vertebra will necessarily be collected. It is evident that some peaks will arise from the par-
ticles floating around, but the most important thing in this moment is to avoid false negative
errors, as false positives errors will be handled later.

In order to formally define a peak, some basic elements need to be defined. A 2D image
is denoted by the function f (x,y) : R2 → R, such that f (x,y) ≥ 0 (since pixels intensity
are non-negative values). The region that is under the graph of this function is denoted
by the set of points S = {(x,y,z) ∈ R3|0 ≤ z ≤ f (x,y)}. Also, let a parallel plane to the
xy-plane be pb = {(x,y,z) ∈ R3|z = b}, where b is its level. Since the image function is
strictly non-negative, only planes such that b ≥ 0 are considered. These planes slice the
region S by applying a slicing operation denoted by C(pb) = S∩ pb. The points generated
by the slicing operation can be grouped into subsets of connected components si,b, such that
C(pb) =

⋃n
i=1 si,b. Each slicing operation produces n≥ 0 connected components, which are

also called slices. Therefore, one may say that si,b is the i-th slice produced by plane pb. By
considering the previous definitions, one may also say that C(p0) = s1,0 = p0, i.e., the lowest
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Figure 3: In (a), the surface plot of an image and the respective tree of slices. In (b), topo-
logical classification of slices obtained from different surface plots.

plane produces only a single slice that is equivalent to this plane. Finally, let the projection
of slice si,b be s′i,b = {(x,y) ∈ R2|(x,y,z) ∈ si,b}

The presented slicing process has an interesting characteristic: for any s′i,b with b > 0,
there is only one s′j,b−1 such that s′i,b ⊆ s′j,b−1. In Figure 3a, for example, s′1,1 and s′2,1 are
subsets of s′1,0; s′1,2 is subset of s′1,1; s′1,3 is a subset of s′1,2; and so on. Since this relationship
can always be established between slices produced by consecutive planes, one can construct
a tree of slices representing this hierarchy. The root of this tree is always the slice produced
by p0, i.e., slice s1,0.

An important notion about slices are their topology. In simple terms, slices are topo-
logically classified according to the number of holes they have; the number of holes define
what is hereby denominated as the genus of a slice. Slices without holes have genus-0, slices
with only one hole have genus-1, slices with two holes have genus-2, and so on. For ex-
ample, Figure 3b exhibits how slices obtained from different surface plots are topologically
classified.

Intuitively speaking, peaks are prominences similar to the first one exhibited in Figure
3b. One can notice it by observing surface plots of real pipe images (after the pre-processing
stage). Peaks can be envisioned as mountains that do not retain rainwater (every drop trickles
down to the mountain base). There are two factors that favor this characteristic: pipe verte-
brae are solid white regions with a dark vicinity, and the Gaussian filter of the pre-processing
stage softens hard edges of vertebrae and hides eventual flaws in pipe marks. More formally,
a peak is a sequence of nodes denoted by P = {nk}m

k=1 = n1,n2, . . . ,nm, such that:

• nm is a leaf node of the tree;

• nk, such that 1≤ k < m, is the parent node of nk+1;

• n1 is the only element that has a brother node, or n1 is the only element that has a
parent with genus greater than zero, or n1 is the root node.

Nodes n1 and nm are respectively named the base and the top of a peak.
Given a tree of slices, one has to traverse it from leaves to root in order to find its peaks.

For each node visited, three conditions must be checked: whether it has a brother; whether its
parent has genus greater than zero; and whether it is the root node. If any of these conditions
is satisfied, the sequence from the current node until the leaf is considered a new peak and
traversal is restarted selecting another leaf node; otherwise, the current node’s parent is set
as the new current node and the traversal goes on. At the end of this process, every peak will
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Figure 4: Slicing images (b) generated by repeatedly applying a simple thresholding opera-
tion in the pre-processed image (a). In (c), the result of the proposed binarization technique.

be found. For example, Figure 3a contains three peaks which can be found by traversing
its tree of slices. The first peak is P′ = s1,2,s1,3 (traversal stopped in s1,2 because its parent
has genus-1). The second peak is P′′ = s2,2,s2,3 (traversal stopped in s2,2 because it has
a brother). And finally, the third peak is P′′′ = s3,2,s3,3,s1,4 (traversal stopped in s3,2 also
because it has a brother). The technique was named multi-level topological binarization
because it analyzes slices from multiple levels and their topology is taken into account.

A practical way of implementing the proposed thresholding technique is to perform the
following steps: slice the pre-processed image by using a simple thresholding operation at
every possible level; evaluate boundaries of the produced slices; construct the tree of slices;
traverse the tree in order to find peaks; and, finally, create the final thresholded image by
drawing nodes which are the base of the peaks.

A simple thresholding operation evaluates pixels of the pre-processed image producing
binary images mb such that pixels greater than or equal to a threshold value b are white;
otherwise, they are black. One binary image is generated for each possible threshold b (256
for the usual grayscale images). Since the connected white regions contained in a binary
image can be understood as slices, this image is named slicing image (Figure 4b).

Subsequently, one has to find the boundaries of the slices of each slicing image. Notice
that internal boundaries (when they exist) are also required to find out the genus of the slices.

The tree of slices is constructed by analyzing the boundaries found in the previous step.
This analysis starts from the lowest slicing image m0 to the highest m255. The slicing image
m0 always has only one slice, so it becomes the root of the tree. For the next images, one
has to find the parental relationship between slices from consecutive slicing images. For any
slice si,b, only one s j,b−1 exists such that si,b ∩ s j,b−1 = si,b. Thus, in order to verify if si,b
is a child of s j,b−1, one may simply test whether one pixel of si,b is inside s j,b−1 (which is
cheaper than testing the whole slice).

The traversal of the tree data structure from leaves to root is achieved by a usual recursive
traversal, but the tests that identify if a slice is the base of a peak are performed after the
recursion call return.

The final step consists in drawing the base of the separated peaks in white into a black
background. This image is the final thresholded image (Figure 4c). The white regions drawn
into this image are called blobs, which are potential pipe vertebrae.

The reference implementation used mostly OpenCV [4] functions to perform these tasks.

4.3 Object Segmentation
The previous stage results in a set of blobs B = {bi : i ∈ {1, . . . ,n}}. However, some of
the blobs found are not related to the pipe. The blobs originating from the pipe vertebrae are
selected by searching for the longest chain of blobs that respects restrictions that are inherent
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to a pipe marked such as in Figure 1. This chain is denoted by a sequence V = { jk}m
k=1 =

j1, j2, . . . , jm, where jk is the index of a blob bi. This sequence has a LIFO policy.
A backtracking algorithm finds the sequence V . It starts by iterating over all blobs of

B. For each blob visited, its index is inserted into V (for the sake of simplicity, henceforth
one may say that a blob, instead of its index, is inserted into V ) and the algorithm searches
recursively for a blob that satisfies some restrictions (see below). When a blob is found, it
is inserted into V and a new blob is sought. When blobs can no longer be inserted into V
(i.e., they do not respect the restrictions), the current V is stored (if it is the longest sequence
found so far) and the algorithm backtracks (i.e., it steps back by removing the last element
of V ). After backtracking, the search for a new blob continues from where it had stopped.
This process is repeated until all blobs are examined.

The restrictions explained below rely on the physical characteristics of the pipe and on
the regularity of the marks painted over it. The following definitions will also be used: bi is
the current blob being tested to be inserted into V ; bl is the last blob inserted into V ; and bp
is the blob inserted immediately before bl (i.e., l = jk and p = jk−1). The distance function
used d : R2×R2→ R evaluates the Euclidian distance between two points.

The first restriction limits the distance between the centroids of bi and bl , respectively ci
and cl . So, in order to insert bi into V , the following restriction must satisfy:

d(ci,cl)≤ dmax, (1)

where dmax is the maximum acceptable distance. One can estimate dmax by regarding: the
distance between two consecutive vertebrae 3a

2 (Figure 1); the closest distance the ROV is
supposed to be from the pipe drov

1; and the focal length of the camera in pixels f . Thus,
dmax =

f
drov

3a
2 .

The second restriction limits the length of the gap between bi and bl . This gap is denoted
by the line segment oiol , where oi is the closest intersection point between the line segment
cicl and the contour of bi. The intersection point ol is similarly defined. Hence, in order to
insert bi into V , the following restriction must satisfy:

d(oi,ol)≤ gmax, (2)

where gmax is the maximum acceptable gap length. Since gaps appear because of the black
marks over the pipe, one may define gmax = d(ci,cl)/3.

The third restriction limits the distance d(oi,ci), which can be understood as a radius of
bi. This distance has an upper and lower limit. So, in order to insert bi into V , the following
restrictions must satisfy:(

1
1+ vmax

)
×d(ol ,cl)≤ d(oi,ci)≤ (1+ vmax)×d(ol ,cl), (3)

where vmax ≥ 0 is a user parameter that represents the acceptable radius variation.
The last restriction limits the exterior angle between cpcl and clci, which is denoted by

θi. Since three points are required to form an angle, this restriction only applies when there
are at least two blobs already inserted into V . Consequently, in order to insert bi into V , the
following restriction must also satisfy:

θi ≤ θmax, (4)

where θmax is a user parameter defined by consulting the technical specifications of the pipe.
1This distance is estimated through data acquired from a sonar when the pipe is as close as possible and yet

entirely framed in the images.
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Input Otsu [13] Bernsen [2] Bradley [3] Sauvola [15] Proposed
Figure 5: From top to bottom, the images depict the following conditions: good contrast
(pipe is close to the camera) and low noise; low contrast and low noise; uneven contrast
along the pipe and low noise; and uneven contrast and high level of noise (the light sources
are close to the camera creating visible light shafts and reflecting floating particles). Otsu’s
algorithm evaluated the threshold values 119, 117, 122, and 147 (ranging from 0 to 255).
The optimal window sizes for Bernsen’s algorithm were 15, 21, 9, and 19. For the Bradley’s
algorithm, they were 29, 31, 21, and 37. Lastly, for the Sauvola’s algorithm, they were 27,
23, 29, and 51. The proposed binarization technique does not require any parameterization.

5 Results
Input images of a real offshore operation are shown in Figure 5. They were captured by a
low-light, monochrome Konsberg OE15-101c underwater camera and utilizing some light
sources. These images have 640×480 pixels and were used to evaluate the proposed multi-
level topological binarization against related thresholding techniques. Prior to the application
of any technique, the images were pre-processed as described in Section 4.1. Otsu’s algo-
rithm [13] was used as a reference for the outcome of a global binarization. The locally
adaptive techniques of Bernsen [2], Bradley [3], and Sauvola [15] were also evaluated. A
contrast/brightness threshold and the window size parameterize the locally adaptive tech-
niques. The threshold parameters were set to the default value of each technique. The
optimal value for window size was manually chosen so that the following properties are
maximized: blobs have no holes; one blob does not arise from more than one vertebra; and
blobs occupy as much of their vertebra area as possible.

Otsu’s global technique is not able to segment the pipe vertebrae in any of the images.
For the first and second images, in spite of the existence of threshold values that would give
better results, it evaluated a value smaller than the required. For the third and fourth images,
the uneven distribution of light along the pipe makes for a complex scenario for any global
technique.

The locally adaptive methods manage to find vertebrae in most of the images, although
some drawbacks occur. The most problematic is choosing which window size to use, since
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Figure 6: In (a), the proposed technique achieved the highest segmentation rate for 16 verte-
brae. In (b), a situation where the proposed algorithm failed to segment the whole pipe.

small windows result in holes inside the blobs and large windows fail to separate the verte-
brae. The proposed binarization technique does not require such parameterization, and yet
successfully segments every vertebra in the first three images. In the last image, the most
challenging one, the proposed binarization technique managed to segment seven vertebrae,
while the other techniques located five at best. Regarding the amount of outliers, Bradley’s
and Sauvola’s algorithms performed the best. However, this is not a big concern in this stage,
where the most important feature is to be robust under harsh conditions.

Additionally, a sequence of images was acquired to evaluate the performance over time.
The sequence features 5627 frames with good contrast. Even though the pipe is not in a fixed
position, its vertebrae remain framed by the camera. There is a low amount of noise in the se-
quence, mainly particles and tiny fish. The criterion chosen to evaluate the segmentation rate
is the amount of frames in which at least 16 vertebrae are segmented . The proposed tech-
nique segmented the pipe in 95.29% of the frames, whereas Bradley’s algorithm achieved
68.49%, Bernsen’s algorithm 13.60%, and Sauvola’s algorithm 5.62%. Figure 6a shows the
percentage of frames as a function of the number of vertebrae segmented. Posterior anal-
ysis of the frames in which the proposed technique failed to segment at least 10 vertebrae
revealed that there were fish occluding the pipe (Figure 6b). All these tests utilized the fol-
lowing restriction parameters for the backtracking algorithm: dmax = 100 pixels; vmax = 1.0;
and θmax = 25◦.

Regarding the object segmentation stage, there was a concern that the proposed algorithm
might be too greedy, since the backtracking approach always visits every possible candidate
while trying to extend the sequence of vertebrae (see pseudo code in Algorithm 1). However,
for a set of blobs B and a sequence of vertebrae V , the average case is only O(|B|2+ |B||V |2),
since, for every non-vertebra blob, the search is very likely to promptly stop at the second
level of recursion. The worst case is O(|B3|), and occurs when all blobs are due to vertebrae
(for example, while processing an image without any noise). Despite that, it is important to
highlight that the average amount of blobs is low (36.97 for the previous sequence of im-
ages) and that the object segmentation stage is the quickest stage of the proposed technique.
Executing it on a desktop with a Core i7-3960X CPU, 24 GB of RAM, a GeForce GTX
560 Ti GPU, and a Windows 7 64-bit operating system, took only 1 ms in average, while
the pre-processing stage took 64 ms (using the GPU implementation of both filters), and the
binarization stage took 123 ms. The high cost of the binarization stage is due to the OpenCV
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implementation of Suzuki and Abe’s algorithm for boundary search [17].

Algorithm 1 Pseudo code of the backtracking search algorithm.

Input: B . set of blobs
Output: V . sequence of indexes of the longest chain

of blobs
1: markedBlobs; . record of the blobs inserted into V
2: tempV ; . temporary V
3: for all bi ∈ B do
4: markedBlobs[i]⇐ true; . mark the current blob
5: tempV.PushBack(i); . insert the index i to the

temporary V
6: NEXTBLOB(i);
7: tempV.PopBack(i);
8: markedBlobs[i]⇐ false;

9: procedure NEXTBLOB(l)
10: for all bi ∈ B do
11: if markedBlobs[i] == true then continue;
12: if d(ci,cl)> dmax then continue; . test distance
13: if d(oi,ol)> gmax then continue; . test gap
14: if d(oi,ci)> (1+ vmax)×d(ol ,cl) or . test radius

d(oi,ci)<
( 1

1+vmax

)
×d(ol ,cl) then continue;

15: if tempV.Size == 1 then
16: markedBlobs[i] = true;
17: tempV.PushBack(i);
18: NEXTBLOB(i);
19: tempV.PopBack();
20: markedBlobs[i] = false;
21: else if tempV.Size > 1 then
22: if θi > θmax then continue; . test angle
23: markedBlobs[i] = true;
24: tempV.PushBack(i);
25: NEXTBLOB(i);
26: if tempV.Size >V.Size then
27: V ⇐ tempV ;
28: tempV.PopBack();
29: markedBlobs[i] = false;

6 Conclusion and Future Work
This paper presented a novel segmentation technique for flexible pipes in deep underwater
environments. Despite the low quality of the input images and the adverse conditions of
the tested scenarios, it achieved promising results. The proposed technique was tested in a
commodity desktop computer achieving interactive rates (∼ 5 fps). Regarding the number
of vertebrae found, the proposed binarization technique outperformed state-of-the-art ones.

For future work, the aim is to verify if the proposed binarization technique can succeed
with text characters of a document image. The hypothesis is that, by relaxing the topological
restriction, characters may also be binarized. An improvement of the occlusion robustness
of the technique is also expected. Furthermore, false positives may occur when blobs due
to non-vertebrae objects are close to the pipe ends. Since these blobs tends to be more
temporally unstable than the blobs due to vertebrae, it is expected that by analyzing the size
and the position of the blobs over the last few frames, one can identify false positives.
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