
1

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 1

Modulo II – Sincronização
Sistemas Distribuídos

Prof. Ismael H F Santos

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 2

Ementa
Sistemas Distribuídos

Cliente-Servidor

2

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 3

Clock
Synchronization

SCD – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 4

Clock Synchronization Algorithms
The relation between clock time and UTC when clocks tick at different
rates.

3

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 5

Cristian's Algorithm

Getting the current time from a time server.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 6

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

4

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 7

Lamport Timestamps

a) Three processes, each with its own clock. The clocks run at different
rates.

b) Lamport's algorithm corrects the clocks.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 8

Global
State

SCD – CO023

5

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 9

Lamport Timestamps

a) Three processes, each with its own clock. The clocks run at different
rates.

b) Lamport's algorithm corrects the clocks.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 10

Example: Totally-Ordered
Multicasting

Updating a replicated database and leaving it in an inconsistent
state.

6

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 11

Global State (1)

a) A consistent cut
b) An inconsistent cut

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 12

Global State (2)

a) Organization of a process and channels for a distributed snapshot

7

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 13

Global State (3)

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the

state of the incoming channel

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 14

The Bully Algorithm (1)

The bully election algorithm
Process 4 holds an election
Process 5 and 6 respond, telling 4 to stop
Now 5 and 6 each hold an election

8

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 15

Global State (3)
d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 16

A Ring Algorithm

Election algorithm using a ring.

9

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 17

Distributed
Mutual Exclusion

SCD – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 18

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when
then replies to 2

10

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 19

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter

the critical region.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 20

A Toke Ring Algorithm

a) An unordered group of processes on a network.
b) A logical ring constructed in software.

11

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 21

Comparison

A comparison of three mutual exclusion algorithms.

Lost token,
process crash0 to n – 11 to ∞Token ring

Crash of any
process2 (n – 1)2 (n – 1)Distributed

Coordinator
crash23Centralized

Problems
Delay before entry
(in message
times)

Messages per
entry/exitAlgorithm

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 22

Distributed
Transaction

SCD – CO023

12

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 23

The Transaction Model (1)

Updating a master tape is fault tolerant.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 24

The Transaction Model (2)

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

13

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 25

The Transaction Model (3)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 26

Distributed Transactions

a) A nested transaction
b) A distributed transaction

14

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 27

Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and appended block 3
c) After committing

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 28

Writeahead Log

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

15

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 29

Concurrency Control (1)

General organization of managers for handling transactions.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 30

Concurrency Control (2)

General
organization of
managers for
handling
distributed
transactions.

16

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 31

Serializability

a) – c) Three transactions T1, T2, and T3
d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 32

Two-Phase Locking (1)

Two-phase locking.

17

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 33

Two-Phase Locking (2)

Strict two-phase locking.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 34

Pessimistic Timestamp Ordering

Concurrency control using timestamps.

18

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 35

Concurrency
Control

SCD – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 36

Distributed
Coordination

SCD – CO023

19

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 37

Chapter 18 Distributed
Coordination

Event Ordering
Mutual Exclusion
Atomicity
Concurrency Control
Deadlock Handling
Election Algorithms
Reaching Agreement

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 38

Chapter Objectives

To describe various methods for achieving
mutual exclusion in a distributed system
To explain how atomic transactions can be
implemented in a distributed system
To show how some of the concurrency-control
schemes discussed in Chapter 6 can be
modified for use in a distributed environment
To present schemes for handling deadlock
prevention, deadlock avoidance, and deadlock
detection in a distributed system

20

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 39

Event Ordering

Happened-before relation (denoted by →)
If A and B are events in the same process,
and A was executed before B, then A → B
If A is the event of sending a message by one
process and B is the event of receiving that
message by another process, then A → B
If A → B and B → C then A → C

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 40

Relative Time for Three Concurrent
Processes

21

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 41

Implementation of →

Associate a timestamp with each system event
Require that for every pair of events A and B, if A → B,
then the timestamp of A is less than the timestamp of B

Within each process Pi a logical clock, LCi is associated
The logical clock can be implemented as a simple counter
that is incremented between any two successive events
executed within a process

Logical clock is monotonically increasing
A process advances its logical clock when it receives a
message whose timestamp is greater than the current
value of its logical clock
If the timestamps of two events A and B are the same,
then the events are concurrent

We may use the process identity numbers to break ties and

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 42

Distributed Mutual Exclusion
(DME)
Assumptions

The system consists of n processes; each
process Pi resides at a different processor
Each process has a critical section that requires
mutual exclusion

Requirement
If Pi is executing in its critical section, then no
other process Pj is executing in its critical section

We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections

22

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 43

DME: Centralized Approach
One of the processes in the system is chosen to
coordinate the entry to the critical section
A process that wants to enter its critical section sends a
request message to the coordinator
The coordinator decides which process can enter the
critical section next, and its sends that process a reply
message
When the process receives a reply message from the
coordinator, it enters its critical section
After exiting its critical section, the process sends a
release message to the coordinator and proceeds with its
execution
This scheme requires three messages per critical-section
entry:

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 44

DME: Fully Distributed Approach

When process Pi wants to enter its critical
section, it generates a new timestamp, TS,
and sends the message request (Pi, TS) to all
other processes in the system
When process Pj receives a request
message, it may reply immediately or it may
defer sending a reply back
When process Pi receives a reply message
from all other processes in the system, it can
enter its critical section
After exiting its critical section, the process
sends reply messages to all its deferred

23

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 45

DME: Fully Distributed Approach
(Cont.)

The decision whether process Pj replies
immediately to a request(Pi, TS) message or
defers its reply is based on three factors:

If Pj is in its critical section, then it defers its
reply to Pi

If Pj does not want to enter its critical section,
then it sends a reply immediately to Pi

If Pj wants to enter its critical section but has
not yet entered it, then it compares its own
request timestamp with the timestamp TS

If its own request timestamp is greater than TS,
then it sends a reply immediately to Pi (Pi asked
first)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 46

Desirable Behavior of Fully Distributed
Approach

Freedom from Deadlock is ensured
Freedom from starvation is ensured, since
entry to the critical section is scheduled
according to the timestamp ordering

The timestamp ordering ensures that
processes are served in a first-come, first
served order

The number of messages per critical-section
entry is

2 x (n – 1)

24

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 47

Three Undesirable Consequences

The processes need to know the identity of all
other processes in the system, which makes
the dynamic addition and removal of
processes more complex

If one of the processes fails, then the entire
scheme collapses

This can be dealt with by continuously
monitoring the state of all the processes in the
system

Processes that have not entered their critical

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 48

Token-Passing Approach

Circulate a token among processes in system
Token is special type of message
Possession of token entitles holder to enter
critical section

Processes logically organized in a ring
structure
Algorithm similar to Chapter 6 algorithm 1 but
token substituted for shared variable
Unidirectional ring guarantees freedom from
starvation
Two types of failures

25

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 49

Atomicity

Either all the operations associated with a
program unit are executed to completion, or
none are performed

Ensuring atomicity in a distributed system
requires a transaction coordinator, which is
responsible for the following:

Starting the execution of the transaction
Breaking the transaction into a number of
subtransactions, and distribution these
subtransactions to the appropriate sites for
execution

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 50

Two-Phase Commit Protocol
(2PC)

Assumes fail-stop model

Execution of the protocol is initiated by the
coordinator after the last step of the
transaction has been reached

When the protocol is initiated, the transaction
may still be executing at some of the local
sites

The protocol involves all the local sites at
which the transaction executed

26

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 51

Phase 1: Obtaining a Decision

Ci adds <prepare T> record to the log
Ci sends <prepare T> message to all sites
When a site receives a <prepare T>
message, the transaction manager
determines if it can commit the transaction

If no: add <no T> record to the log and
respond to Ci with <abort T>
If yes:

add <ready T> record to the log
force all log records for T onto stable storage
transaction manager sends <ready T> message
to Ci

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 52

Phase 1 (Cont.)

Coordinator collects responses
All respond “ready”,
decision is commit
At least one response is “abort”,
decision is abort
At least one participant fails to respond within
time out period,
decision is abort

27

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 53

Phase 2: Recording Decision in the
Database

Coordinator adds a decision record
<abort T> or <commit T>

to its log and forces record onto stable
storage
Once that record reaches stable storage it is
irrevocable (even if failures occur)
Coordinator sends a message to each
participant informing it of the decision
(commit or abort)
Participants take appropriate action locally

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 54

Failure Handling in 2PC – Site
Failure

The log contains a <commit T> record
In this case, the site executes redo(T)

The log contains an <abort T> record
In this case, the site executes undo(T)

The contains a <ready T> record; consult Ci
If Ci is down, site sends query-status T
message to the other sites

The log contains no control records
concerning T

In this case, the site executes undo(T)

28

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 55

Failure Handling in 2PC – Coordinator Ci
Failure

If an active site contains a <commit T> record
in its log, the T must be committed
If an active site contains an <abort T> record
in its log, then T must be aborted
If some active site does not contain the
record <ready T> in its log then the failed
coordinator Ci cannot have decided to
commit T

Rather than wait for Ci to recover, it is
preferable to abort T

All active sites have a <ready T> record in
their logs but no additional control records

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 56

Concurrency Control

Modify the centralized concurrency schemes
to accommodate the distribution of
transactions

Transaction manager coordinates execution
of transactions (or subtransactions) that
access data at local sites

Local transaction only executes at that site

Global transaction executes at several sites

29

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 57

Locking Protocols

Can use the two-phase locking protocol in a
distributed environment by changing how the
lock manager is implemented

Nonreplicated scheme – each site maintains
a local lock manager which administers lock
and unlock requests for those data items that
are stored in that site

Simple implementation involves two message
transfers for handling lock requests, and one
message transfer for handling unlock requests
Deadlock handling is more complex

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 58

Single-Coordinator Approach

A single lock manager resides in a single
chosen site, all lock and unlock requests are
made a that site

Simple implementation

Simple deadlock handling

Possibility of bottleneck

Vulnerable to loss of concurrency controller if
single site fails

30

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 59

Majority Protocol

Avoids drawbacks of central control by
dealing with replicated data in a decentralized
manner

More complicated to implement

Deadlock-handling algorithms must be
modified; possible for deadlock to occur in
locking only one data item

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 60

Biased Protocol

Similar to majority protocol, but requests for
shared locks prioritized over requests for
exclusive locks

Less overhead on read operations than in
majority protocol; but has additional overhead
on writes

Like majority protocol, deadlock handling is
complex

31

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 61

Primary Copy

One of the sites at which a replica resides is
designated as the primary site

Request to lock a data item is made at the
primary site of that data item

Concurrency control for replicated data
handled in a manner similar to that of
unreplicated data

Simple implementation, but if primary site
fails, the data item is unavailable, even
though other sites may have a replica

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 62

Timestamping

Generate unique timestamps in distributed
scheme:

Each site generates a unique local timestamp
The global unique timestamp is obtained by
concatenation of the unique local timestamp
with the unique site identifier
Use a logical clock defined within each site to
ensure the fair generation of timestamps

Timestamp-ordering scheme – combine the
centralized concurrency control timestamp
scheme with the 2PC protocol to obtain a

32

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 63

Generation of Unique Timestamps

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 64

Deadlock Prevention

Resource-ordering deadlock-prevention –
define a global ordering among the system
resources

Assign a unique number to all system
resources
A process may request a resource with unique
number i only if it is not holding a resource
with a unique number grater than i
Simple to implement; requires little overhead

Banker’s algorithm – designate one of the
processes in the system as the process that

33

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 65

Timestamped Deadlock-Prevention
Scheme

Each process Pi is assigned a unique priority
number

Priority numbers are used to decide whether
a process Pi should wait for a process Pj;
otherwise Pi is rolled back

The scheme prevents deadlocks
For every edge Pi → Pj in the wait-for graph, Pi
has a higher priority than Pj

Thus a cycle cannot exist

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 66

Wait-Die Scheme

Based on a nonpreemptive technique

If Pi requests a resource currently held by
Pj, Pi is allowed to wait only if it has a
smaller timestamp than does Pj (Pi is older
than Pj)

Otherwise, Pi is rolled back (dies)

Example: Suppose that processes P1, P2,
and P3 have timestamps t, 10, and 15
respectively

if P request a resource held by P then P

34

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 67

Would-Wait Scheme

Based on a preemptive technique;
counterpart to the wait-die system

If Pi requests a resource currently held by Pj,
Pi is allowed to wait only if it has a larger
timestamp than does Pj (Pi is younger than
Pj). Otherwise Pj is rolled back (Pj is
wounded by Pi)

Example: Suppose that processes P1, P2,
and P3 have timestamps 5, 10, and 15
respectively

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 68

Two Local Wait-For Graphs

35

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 69

Global Wait-For Graph

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 70

Deadlock Detection – Centralized
Approach

Each site keeps a local wait-for graph
The nodes of the graph correspond to all the
processes that are currently either holding or
requesting any of the resources local to that site

A global wait-for graph is maintained in a single
coordination process; this graph is the union of all
local wait-for graphs
There are three different options (points in time)
when the wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of

the local wait-for graphs
2. Periodically, when a number of changes have occurred in

a wait-for graph
3. Whenever the coordinator needs to invoke the cycle-

d t ti l ith

36

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 71

Detection Algorithm Based on
Option 3

Append unique identifiers (timestamps) to
requests form different sites

When process Pi, at site A, requests a
resource from process Pj, at site B, a request
message with timestamp TS is sent

The edge Pi → Pj with the label TS is inserted
in the local wait-for of A. The edge is inserted
in the local wait-for graph of B only if B has
received the request message and cannot
immediately grant the requested resource

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 72

The Algorithm

1.The controller sends an initiating message to
each site in the system

2.On receiving this message, a site sends its
local wait-for graph to the coordinator

3.When the controller has received a reply from
each site, it constructs a graph as follows:
(a) The constructed graph contains a vertex for

every process in the system
(b) The graph has an edge Pi → Pj if and only

if
(1) there is an edge Pi → Pj in one of the wait-for

graphs, or

37

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 73

Local and Global Wait-For Graphs

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 74

Fully Distributed Approach

All controllers share equally the responsibility
for detecting deadlock
Every site constructs a wait-for graph that
represents a part of the total graph
We add one additional node Pex to each local
wait-for graph
If a local wait-for graph contains a cycle that
does not involve node Pex, then the system is
in a deadlock state
A cycle involving Pex implies the possibility of
a deadlock

T t i h th d dl k d i t

38

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 75

Augmented Local Wait-For
Graphs

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 76

Augmented Local Wait-For Graph in
Site S2

39

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 77

Election Algorithms

Determine where a new copy of the
coordinator should be restarted
Assume that a unique priority number is
associated with each active process in the
system, and assume that the priority number
of process Pi is i
Assume a one-to-one correspondence
between processes and sites
The coordinator is always the process with
the largest priority number. When a
coordinator fails, the algorithm must elect that
active process with the largest priority

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 78

Bully Algorithm

Applicable to systems where every process
can send a message to every other process
in the system

If process Pi sends a request that is not
answered by the coordinator within a time
interval T, assume that the coordinator has
failed; Pi tries to elect itself as the new
coordinator

Pi sends an election message to every
process with a higher priority number, Pi then

40

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 79

Bully Algorithm (Cont.)

If no response within T, assume that all
processes with numbers greater than i have
failed; Pi elects itself the new coordinator

If answer is received, Pi begins time interval
T´, waiting to receive a message that a
process with a higher priority number has
been elected

If no message is sent within T´, assume the
process with a higher number has failed; Pi
should restart the algorithm

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 80

Bully Algorithm (Cont.)

If Pi is not the coordinator, then, at any time
during execution, Pi may receive one of the
following two messages from process Pj

Pj is the new coordinator (j > i). Pi, in turn,
records this information
Pj started an election (j > i). Pi, sends a
response to Pj and begins its own election
algorithm, provided that Pi has not already
initiated such an election

After a failed process recovers, it immediately
begins execution of the same algorithm

If th ti ith hi h

41

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 81

Ring Algorithm
Applicable to systems organized as a ring
(logically or physically)

Assumes that the links are unidirectional,
and that processes send their messages to
their right neighbors

Each process maintains an active list,
consisting of all the priority numbers of all
active processes in the system when the
algorithm ends

If Pi d t t di t f il I

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 82

Ring Algorithm (Cont.)

If Pi receives a message elect(j) from the process on
the left, it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi
creates a new active list with the numbers i and j

It then sends the message elect(i), followed by the
message elect(j)

2. If i ≠ j, then the active list for Pi now contains the
numbers of all the active processes in the system

Pi can now determine the largest number in the active
list to identify the new coordinator process

3. If i = j, then Pi receives the message elect(i)
The active list for Pi contains all the active processes
in the system

P d t i th di t

42

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 83

Reaching Agreement

There are applications where a set of
processes wish to agree on a common
“value”

Such agreement may not take place due to:
Faulty communication medium
Faulty processes

Processes may send garbled or incorrect
messages to other processes
A subset of the processes may collaborate with
each other in an attempt to defeat the scheme

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 84

Faulty Communications

Process Pi at site A, has sent a message to
process Pj at site B; to proceed, Pi needs to
know if Pj has received the message
Detect failures using a time-out scheme

When Pi sends out a message, it also
specifies a time interval during which it is
willing to wait for an acknowledgment
message form Pj
When Pj receives the message, it immediately
sends an acknowledgment to Pi
If Pi receives the acknowledgment message
within the specified time interval, it concludes
that Pj has received its message

If ti t P d t t it it

43

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 85

Faulty Communications (Cont.)

Suppose that Pj also needs to know that Pi
has received its acknowledgment message,
in order to decide on how to proceed

In the presence of failure, it is not possible to
accomplish this task
It is not possible in a distributed environment
for processes Pi and Pj to agree completely on
their respective states

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 86

Faulty Processes (Byzantine Generals
Problem)

Communication medium is reliable, but
processes can fail in unpredictable ways
Consider a system of n processes, of which
no more than m are faulty

Suppose that each process Pi has some
private value of Vi

Devise an algorithm that allows each
nonfaulty Pi to construct a vector Xi = (Ai,1,
Ai,2, …, Ai,n) such that::

If Pj is a nonfaulty process, then Aij = Vj.

If Pi and Pj are both nonfaulty processes,
then X = X

44

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 87

Faulty Processes (Cont.)
An algorithm for the case where m = 1 and n
= 4 requires two rounds of information
exchange:

Each process sends its private value to the
other 3 processes
Each process sends the information it has
obtained in the first round to all other
processes

If a faulty process refuses to send messages,
a nonfaulty process can choose an arbitrary
value and pretend that that value was sent by
that process
After the two rounds are completed a

