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Sistemas Distribuídos
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Clock  
Synchronization

SCD – CO023
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Clock Synchronization Algorithms
The relation between clock time and UTC when clocks tick at different 
rates.
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Cristian's Algorithm

Getting the current time from a time server.
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The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock
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Lamport Timestamps

a) Three processes, each with its own clock.  The clocks run at different 
rates.

b) Lamport's algorithm corrects the clocks.
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Global
State

SCD – CO023
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Lamport Timestamps

a) Three processes, each with its own clock.  The clocks run at different 
rates.

b) Lamport's algorithm corrects the clocks.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 10

Example: Totally-Ordered 
Multicasting

Updating a replicated database and leaving it in an inconsistent
state.
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Global State (1)

a) A consistent cut
b) An inconsistent cut
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Global State (2)

a) Organization of a process and channels for a distributed snapshot
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Global State (3)

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the 

state of the incoming channel
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The Bully Algorithm (1)

The bully election algorithm
Process 4 holds an election
Process 5 and 6 respond, telling 4 to stop
Now 5 and 6 each hold an election
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Global State (3)
d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone
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A Ring Algorithm

Election algorithm using a ring.
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Distributed
Mutual Exclusion

SCD – CO023
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Mutual Exclusion: 
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.  
Permission is granted

b) Process 2 then asks permission to enter the same critical region.  The 
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when 
then replies to 2
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A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter 

the critical region.
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A Toke Ring Algorithm

a) An unordered group of processes on a network.  
b) A logical ring constructed in software.



11

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 21

Comparison

A comparison of three mutual exclusion algorithms.

Lost token, 
process crash0 to n – 11 to ∞Token ring

Crash of any 
process2 ( n – 1 )2 ( n – 1 )Distributed

Coordinator 
crash23Centralized

Problems
Delay before entry 
(in message 
times)

Messages per 
entry/exitAlgorithm
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Distributed
Transaction

SCD – CO023
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The Transaction Model (1)

Updating a master tape is fault tolerant.
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The Transaction Model (2)

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive



13

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 25

The Transaction Model (3)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)
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Distributed Transactions

a) A nested transaction
b) A distributed transaction
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Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and appended block 3
c) After committing
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Writeahead Log

a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)   

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a) 
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Concurrency Control (1)

General organization of managers for handling transactions.
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Concurrency Control (2)

General 
organization of 
managers for 
handling 
distributed 
transactions.
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Serializability

a) – c) Three transactions T1, T2, and T3
d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3;Schedule 3

Legalx = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3;Schedule 2

Legalx = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3Schedule 1

(d)
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Two-Phase Locking (1)

Two-phase locking.
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Two-Phase Locking (2)

Strict two-phase locking.
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Pessimistic Timestamp Ordering

Concurrency control using timestamps.
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Concurrency
Control

SCD – CO023
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Distributed
Coordination

SCD – CO023
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Chapter 18  Distributed 
Coordination

Event Ordering
Mutual Exclusion 
Atomicity
Concurrency Control
Deadlock Handling
Election Algorithms
Reaching Agreement
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Chapter Objectives

To describe various methods for achieving 
mutual exclusion in a distributed system
To explain how atomic transactions can be 
implemented in a distributed system
To show how some of the concurrency-control 
schemes discussed in Chapter 6 can be 
modified for use in a distributed environment
To present schemes for handling deadlock 
prevention, deadlock avoidance, and deadlock 
detection in a distributed system
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Event Ordering

Happened-before relation (denoted by →)
If A and B are events in the same process, 
and A was executed before B, then A → B
If A is the event of sending a message by one 
process and B is the event of receiving that 
message by another process, then A → B
If A → B and B → C then A → C
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Relative Time for Three Concurrent 
Processes
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Implementation of →

Associate a timestamp with each system event
Require that for every pair of events A and B, if A → B, 
then the timestamp of A is less than the timestamp of B

Within each process Pi a logical clock, LCi is associated
The logical clock can be implemented as a simple counter 
that is incremented between any two successive events 
executed within a process 

Logical clock is monotonically increasing
A process advances its logical clock when it receives a 
message whose timestamp is greater than the current 
value of its logical clock
If the timestamps of two events A and B are the same, 
then the events are concurrent

We may use the process identity numbers to break ties and
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Distributed Mutual Exclusion 
(DME) 
Assumptions

The system consists of  n processes; each 
process Pi resides at a different processor
Each process has a critical section that requires 
mutual exclusion

Requirement
If Pi is executing in its critical section, then no 
other process Pj is executing in its critical section

We present two algorithms to ensure the mutual 
exclusion execution of processes in their critical 
sections 
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DME:  Centralized Approach
One of the processes in the system is chosen to 
coordinate the entry to the critical section
A process that wants to enter its critical section sends a 
request message to the coordinator
The coordinator decides which process can enter the 
critical section next, and its sends that process a reply 
message
When the process receives a reply message from the 
coordinator, it enters its critical section
After exiting its critical section, the process sends a 
release message to the coordinator and proceeds with its 
execution 
This scheme requires three messages per critical-section 
entry:
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DME:  Fully Distributed Approach

When process Pi wants to enter its critical 
section, it generates a new timestamp, TS, 
and sends the message request (Pi, TS) to all 
other processes in the system
When process Pj receives a request
message, it may reply immediately or it may 
defer sending a reply back
When process Pi receives a reply message 
from all other processes in the system, it can 
enter its critical section
After exiting its critical section, the process 
sends reply messages to all its deferred
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DME:  Fully Distributed Approach 
(Cont.)

The decision whether process Pj replies 
immediately to a request(Pi, TS) message or 
defers its reply is based on three factors:

If Pj is in its critical section, then it defers its 
reply to Pi

If Pj does not want to enter its critical section, 
then it sends a reply immediately to Pi

If Pj wants to enter its critical section but has 
not yet entered it, then it compares its own 
request timestamp with the timestamp TS

If its own request timestamp is greater than TS, 
then it sends a reply immediately to Pi (Pi asked 
first)
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Desirable Behavior of Fully Distributed 
Approach

Freedom from Deadlock is ensured
Freedom from starvation is ensured, since 
entry to the critical section is scheduled 
according to the timestamp ordering

The timestamp ordering ensures that 
processes are served in a first-come, first 
served order 

The number of messages per critical-section 
entry is 

2 x (n – 1)
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Three Undesirable Consequences

The processes need to know the identity of all 
other processes in the system, which makes 
the dynamic addition and removal of 
processes more complex

If one of the processes fails, then the entire 
scheme collapses

This can be dealt with by continuously 
monitoring the state of all the processes in the 
system

Processes that have not entered their critical 

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 48

Token-Passing Approach

Circulate a token among processes in system
Token is special type of message
Possession of token entitles holder to enter 
critical section

Processes logically organized in a ring 
structure
Algorithm similar to Chapter 6 algorithm 1 but 
token substituted for shared variable
Unidirectional ring guarantees freedom from 
starvation
Two types of failures
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Atomicity 

Either all the operations associated with a 
program unit are executed to completion, or 
none are performed

Ensuring atomicity in a distributed system 
requires a transaction coordinator, which is 
responsible for the following:

Starting the execution of the transaction
Breaking the transaction into a number of 
subtransactions, and distribution these 
subtransactions to the appropriate sites for 
execution
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Two-Phase Commit Protocol 
(2PC)

Assumes fail-stop model

Execution of the protocol is initiated by the 
coordinator after the last step of the 
transaction has been reached

When the protocol is initiated, the transaction 
may still be executing at some of the local 
sites

The protocol involves all the local sites at 
which the transaction executed
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Phase 1:  Obtaining a Decision

Ci adds <prepare T> record to the log 
Ci sends <prepare T> message to all sites
When a site receives a <prepare T> 
message, the transaction manager 
determines if it can commit the transaction

If no:  add <no T> record to the log and 
respond to Ci with <abort T>
If yes:

add <ready T> record to the log
force all log records for T onto stable storage
transaction manager sends <ready T> message 
to Ci
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Phase 1 (Cont.)

Coordinator collects responses
All respond “ready”, 
decision is commit
At least one response is “abort”,
decision is abort
At least one participant fails to respond within 
time out period,
decision is abort
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Phase 2:  Recording Decision in the 
Database

Coordinator adds a decision record 
<abort T> or <commit T>

to its log and forces record onto stable 
storage
Once that record reaches stable storage it is 
irrevocable (even if failures occur)
Coordinator sends a message to each 
participant informing it of the decision 
(commit or abort)
Participants take appropriate action locally
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Failure Handling in 2PC – Site 
Failure

The log contains a <commit T> record
In this case, the site executes redo(T)

The log contains an <abort T> record
In this case, the site executes undo(T)

The contains a <ready T> record; consult Ci
If Ci is down, site sends query-status T
message to the other sites

The log contains no control records 
concerning T

In this case, the site executes undo(T)
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Failure Handling in 2PC – Coordinator Ci
Failure

If an active site contains a <commit T> record 
in its log, the T must be committed
If an active site contains an <abort T> record 
in its log, then T must be aborted
If some active site does not contain the 
record <ready T> in its log then the failed 
coordinator Ci cannot have decided to 
commit T

Rather than wait for Ci to recover, it is 
preferable to abort T

All active sites have a <ready T> record in 
their logs but no additional control records
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Concurrency Control

Modify the centralized concurrency schemes 
to accommodate the distribution of 
transactions

Transaction manager coordinates execution 
of transactions (or subtransactions) that 
access data at local sites 

Local transaction only executes at that site 

Global transaction executes at several sites 
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Locking Protocols

Can use the two-phase locking protocol in a 
distributed environment by changing how the 
lock manager is implemented

Nonreplicated scheme – each site maintains 
a local lock manager which administers lock 
and unlock requests for those data items that 
are stored in that site

Simple implementation involves two message 
transfers for handling lock requests, and one 
message transfer for handling unlock requests
Deadlock handling is more complex
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Single-Coordinator Approach

A single lock manager resides in a single 
chosen site, all lock and unlock requests are 
made a that site

Simple implementation

Simple deadlock handling

Possibility of bottleneck

Vulnerable to loss of concurrency controller if 
single site fails
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Majority Protocol

Avoids drawbacks of central control by 
dealing with replicated data in a decentralized 
manner

More complicated to implement 

Deadlock-handling algorithms must be 
modified; possible for deadlock to occur in 
locking only one data item
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Biased Protocol

Similar to majority protocol, but requests for 
shared locks prioritized over requests for 
exclusive locks

Less overhead on read operations than in 
majority protocol; but has additional overhead 
on writes 

Like majority protocol, deadlock handling is 
complex
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Primary Copy

One of the sites at which a replica resides is 
designated as the primary site  

Request to lock a data item is made at the 
primary site of that data item

Concurrency control for replicated data 
handled in a manner similar to that of 
unreplicated data 

Simple implementation, but if primary site 
fails, the data item is unavailable, even 
though other sites may have a replica
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Timestamping

Generate unique timestamps in distributed 
scheme:

Each site generates a unique local timestamp
The global unique timestamp is obtained by 
concatenation of the unique local timestamp 
with the unique site identifier
Use a logical clock defined within each site to 
ensure the fair generation of timestamps

Timestamp-ordering scheme – combine the 
centralized concurrency control timestamp 
scheme with the 2PC protocol to obtain a 
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Generation of Unique Timestamps
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Deadlock Prevention

Resource-ordering deadlock-prevention –
define a global ordering among the system 
resources

Assign a unique number to all system 
resources
A process may request a resource with unique 
number i only if it is not holding a resource 
with a unique number grater than i
Simple to implement; requires little overhead

Banker’s algorithm – designate one of the 
processes in the system as the process that 
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Timestamped Deadlock-Prevention 
Scheme

Each process Pi is assigned a unique priority 
number 

Priority numbers are used to decide whether 
a process Pi should wait for a process Pj; 
otherwise Pi is rolled back

The scheme prevents deadlocks 
For every edge Pi → Pj in the wait-for graph, Pi
has a higher priority than Pj

Thus a cycle cannot exist
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Wait-Die Scheme

Based on a nonpreemptive technique

If Pi requests a resource currently held by 
Pj, Pi is allowed to wait only if it has a 
smaller timestamp than does Pj (Pi is older 
than Pj)

Otherwise, Pi is rolled back (dies)

Example:  Suppose that processes P1, P2, 
and P3 have timestamps t, 10, and 15 
respectively

if P request a resource held by P then P
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Would-Wait Scheme

Based on a preemptive technique; 
counterpart to the wait-die system

If Pi requests a resource currently held by Pj, 
Pi is allowed to wait only if it has a larger 
timestamp than does Pj (Pi is younger than 
Pj).  Otherwise Pj is rolled back (Pj is 
wounded by Pi)

Example:  Suppose that processes P1, P2, 
and P3 have timestamps 5, 10, and 15 
respectively
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Two Local Wait-For Graphs
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Global Wait-For Graph
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Deadlock Detection – Centralized 
Approach

Each site keeps a local wait-for graph  
The nodes of the graph correspond to all the 
processes that are currently either holding or 
requesting any of the resources local to that site

A global wait-for graph is maintained in a single 
coordination process; this graph is the union of all 
local wait-for graphs 
There are three different options (points in time) 
when the wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of 

the local wait-for graphs
2. Periodically, when a number of changes have occurred in 

a wait-for graph
3. Whenever the coordinator needs to invoke the cycle-

d t ti l ith
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Detection Algorithm Based on 
Option 3

Append unique identifiers (timestamps) to 
requests form different sites

When process Pi, at site A, requests a 
resource from process Pj, at site B, a request 
message with timestamp TS is sent

The edge Pi → Pj with the label TS is inserted 
in the local wait-for of A. The edge is inserted 
in the local wait-for graph of B only if B has 
received the request message and cannot 
immediately grant the requested resource
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The Algorithm 

1.The controller sends an initiating message to 
each site in the system 

2.On receiving this message, a site sends its 
local wait-for graph to the coordinator

3.When the controller has received a reply from 
each site, it constructs a graph as follows:
(a) The constructed graph contains a vertex for 

every process in the system
(b)   The graph has an edge Pi → Pj if and only 

if 
(1) there is an edge Pi → Pj in one of the wait-for 

graphs, or
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Local and Global Wait-For Graphs
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Fully Distributed Approach

All controllers share equally the responsibility 
for detecting deadlock
Every site constructs a wait-for graph that 
represents a part of the total graph
We add one additional node Pex to each local 
wait-for graph
If a local wait-for graph contains a cycle that 
does not involve node Pex, then the system is 
in a deadlock state
A cycle involving Pex implies the possibility of 
a deadlock

T t i h th d dl k d i t
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Augmented Local Wait-For 
Graphs 
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Augmented Local Wait-For Graph in 
Site S2
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Election Algorithms

Determine where a new copy of the 
coordinator should be restarted
Assume that a unique priority number is 
associated with each active process in the 
system, and assume that the priority number 
of process Pi is i
Assume a one-to-one correspondence 
between processes and sites
The coordinator is always the process with 
the largest priority number.  When a 
coordinator fails, the algorithm must elect that 
active process with the largest priority
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Bully Algorithm

Applicable to systems where every process 
can send a message to every other process 
in the system

If process Pi sends a request that is not 
answered by the coordinator within a time 
interval T, assume that the coordinator has 
failed; Pi tries to elect itself as the new 
coordinator

Pi sends an election message to every 
process with a higher priority number, Pi then
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Bully Algorithm (Cont.)

If no response within T, assume that all 
processes with numbers greater than i have 
failed; Pi elects itself the new coordinator

If answer is received, Pi begins time interval 
T´, waiting to receive a message that a 
process with a higher priority number has 
been elected

If no message is sent within T´, assume the 
process with a higher number has failed; Pi
should restart the algorithm
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Bully Algorithm (Cont.)

If Pi is not the coordinator, then, at any time 
during execution, Pi may receive one of the 
following two messages from process Pj

Pj is the new coordinator (j > i).  Pi, in turn, 
records this information
Pj started an election (j > i).  Pi, sends a 
response to Pj and begins its own election 
algorithm, provided that Pi has not already 
initiated such an election

After a failed process recovers, it immediately 
begins execution of the same algorithm

If th ti ith hi h
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Ring Algorithm
Applicable to systems organized as a ring 
(logically or physically)

Assumes that the links are unidirectional, 
and that processes send their messages to 
their right neighbors 

Each process maintains an active list, 
consisting of all the priority numbers of all 
active processes in the system when the 
algorithm ends

If Pi d t t di t f il I
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Ring Algorithm (Cont.)

If Pi receives a message elect(j) from the process on 
the left, it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi
creates a new active list with the numbers i and j

It then sends the message elect(i), followed by the 
message elect(j)

2. If i ≠ j, then the active list for Pi now contains the 
numbers of all the active processes in the system  

Pi can now determine the largest number in the active 
list to identify the new coordinator process

3. If i = j, then Pi receives the message elect(i)
The active list for Pi contains all the active processes 
in the system

P d t i th di t
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Reaching Agreement

There are applications where a set of 
processes wish to agree on a common 
“value”

Such agreement may not take place due to:
Faulty communication medium
Faulty processes 

Processes may send garbled or incorrect 
messages to other processes
A subset of the processes may collaborate with 
each other in an attempt to defeat the scheme
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Faulty Communications

Process Pi at site A, has sent a message to 
process Pj at site B; to proceed, Pi needs to 
know if Pj has received the message
Detect failures using a time-out scheme

When Pi sends out a message, it also 
specifies a time interval during which it is 
willing to wait for an acknowledgment 
message form Pj
When Pj receives the message, it immediately 
sends an acknowledgment to Pi
If Pi receives the acknowledgment message 
within the specified time interval, it concludes 
that Pj has received its message

If ti t P d t t it it



43

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 85

Faulty Communications (Cont.)

Suppose that Pj also needs to know that Pi
has received its acknowledgment message, 
in order to decide on how to proceed

In the presence of failure, it is not possible to 
accomplish this task
It is not possible in a distributed environment 
for processes Pi and Pj to agree completely on 
their respective states
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Faulty Processes (Byzantine Generals 
Problem)

Communication medium is reliable, but 
processes can fail in unpredictable ways 
Consider a system of n processes, of which 
no more than m are faulty

Suppose that each process Pi has some 
private value of Vi

Devise an algorithm that allows each 
nonfaulty Pi to construct a vector Xi = (Ai,1, 
Ai,2, …, Ai,n) such that::

If Pj is a nonfaulty process, then Aij = Vj.

If Pi and Pj are both nonfaulty processes, 
then X = X
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Faulty Processes (Cont.)
An algorithm for the case where m = 1 and n 
= 4 requires two rounds of information 
exchange:

Each process sends its private value to the 
other 3 processes
Each process sends the information it has 
obtained in the first round to all other 
processes

If a faulty process refuses to send messages, 
a nonfaulty process can choose an arbitrary 
value and pretend that that value was sent by 
that process 
After the two rounds are completed a


