
1

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 1

Modulo I - Deadlocks
Programação Concorrente

Prof. Ismael H F Santos

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 2

Ementa
Programação Concorrente - Deadlocks

The Deadlock Problem
Deadlock Characterization
Methods for Handling Deadlocks

Deadlock Prevention
Deadlock Avoidance - Banker's Algorithm
Deadlock Detection

Recovery from Deadlock

2

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 3

Objectives

To develop a description of deadlocks,
which prevent sets of concurrent processes
from completing their tasks
To present a number of different methods
for preventing or avoiding deadlocks in a
computer system.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 4

Problema
De

Deadlock

SCD – CO023

3

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 5

The Deadlock Problem

A set of blocked processes each holding a
resource and waiting to acquire a resource
held by another process in the set.
Example

System has 2 tape drives.
P1 and P2 each hold one tape drive and each
needs another one.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 6

The Deadlock Problem

Example
semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

4

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 7

A Deadlock Example

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 8

Bridge Crossing Example

Traffic only in one direction.
Each section of a bridge can be viewed as a resource.
If a deadlock occurs, it can be resolved if one car backs
up (preempt resources and rollback).
Several cars may have to be backed up if a deadlock
occurs.
Starvation is possible.

5

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 9

Caracterização
Deadlock

SCD – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 10

System Model
Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:
request for a resource is made; if the request is not
granted, a process is blocked (and waits) until a
resource is granted.
usage of a resource for some time; after resource
being granted.
release of resource; when not any more needed.

6

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 11

Deadlock Characterization

Deadlock can arise if four conditions hold
simultaneously.

Mutual exclusion: only one process at a time
can use a resource.
Hold and wait: a process holding at least one
resource is waiting to acquire additional
resources held by other processes.
No preemption: a resource can be released
only voluntarily by the process holding it, after
that process has completed its task.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 12

Deadlock Characterization

Deadlock can arise if four conditions hold
simultaneously (cont.)

Circular wait: there exists a set {P0, P1, …,
P0} of waiting processes such that P0 is waiting
for a resource that is held by P1, P1 is waiting
for a resource that is held by P2, …, Pn–1 is
waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held
by P0.

Note above conditions are necessary but not
sufficient for deadlock to occur !

7

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 13

Resource-Allocation Graph

Resource allocation graphs are useful in
analyzing deadlock situations.
A set of vertices V and a set of edges E

V is partitioned into two types:
P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system.

R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system.

request edge – directed edge P1 → Rj
assignment edge – directed edge Rj → Pi

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 14

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

Pi

Rj

Pi

Rj

8

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 15

Example of a Resource Allocation Graph

No cycle => no deadlock !

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 16

Resource Allocation Graph with a Deadlock

Deadlock exists !!!

9

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 17

Resource Allocation Graph with a Cycle But
No Deadlock

Cycle but no deadlock !

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 18

Basic Facts

If graph contains no cycles ⇒ no deadlock.

If graph contains a cycle ⇒
if only one instance per resource type, then
deadlock.
if several instances per resource type,
possibility of deadlock.

10

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 19

Tratamento
De

Deadlock

SCD – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 20

Methods for Handling Deadlocks

Deadlock prevention: Ensure that the system will never
enter a deadlock state by making that at least one of the
necessary deadlock conditions does not hold.
Deadlock avoidance: Ensure that the system will never
enter a deadlock state since O.S. never granting an
unsafe request for resources; O.S. has to have some
advanced information how resources are to be
requested.
Deadlock detection and recovery: Allow the system to
enter a deadlock state and then recover.
Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX.

11

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 21

Deadlock Prevention

Restrain the ways request can be made
Mutual Exclusion – not required for sharable
resources; must hold for nonsharable resources.

Solutions for some types of non-sharable resource:
– spool if you can, e.g. printer or plotter,
– windows introduced to share one monitor.

Unix does all of those, thus it takes some care of
deadlock.

.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 22

Deadlock Prevention

Restrain the ways request can be made (cont.)
Hold and Wait – must guarantee that whenever
a process requests a resource, it does not hold
any other resources.

Require process to request and be allocated all its
resources before it begins execution, or
Allow process to request resources only when the
process has none.

Because of low resource utilization or/and
starvation, none of those approaches promising.

.

12

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 23

Deadlock Prevention (Cont.)
No Preemption – usually not promising, although
applicable to resources whose state can be easily
saved and restored later, e.g. CPU registers and
memory space.

If a process that is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are
released.
Preempted resources are added to the list of
resources for which the process is waiting.
Process will be restarted only when it can regain its
old resources, as well as the new ones that it is
requesting.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 24

Deadlock Prevention (Cont.)
Circular Wait – an interesting and useful algorithm
exists, that can be also applied in some different
situations.
– The algorithm imposes a total ordering of all resource

types, i.e. each resource type has its unique number;
– Processes can require resources any time but any

request may be asking only for a resource numbered
higher than any of currently held resources.

– If this this rule is followed by everybody, a circular wait is
not possible, thus a deadlock is prevented. Note that the
operating system can detect a process that doesn’t
follow the rule.

13

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 25

Deadlock Avoidance
Deadlock avoidance algorithms normally requires that the
system has some additional a priori information about
process behavior. The simplest and most useful model
requires that each process declares in advance the
maximum number of resources of each type that it may
need during its execution.

When a process requests an available resource, system
must decide if immediate allocation leaves the system in a
safe state or moves it into unsafe state.
The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition.
Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 26

Safe State

System is in safe state if there exists a safe sequence
of all processes.
Sequence <P1, P2, …, Pn> is safe if for each Pi, the
resources that Pi can still request can be satisfied by
currently available resources + resources held by all
the Pj, with j<i.

If Pi resource needs are not immediately available, then
Pi can wait until all Pj (j<i) have finished.
When Pj is finished, Pi can obtain needed resources,
execute, return allocated resources, and terminate.
When Pi terminates, Pi+1 can obtain its needed
resources, and so on.

14

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 27

Basic Facts

If a system is in safe state ⇒ no deadlocks.

If a system is in unsafe state ⇒ possibility of
deadlock.

Deadlock Avoidance ⇒ ensure that a system
will never enter an unsafe state.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 28

Safe, Unsafe , Deadlock State

15

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 29

Resource-Allocation Graph Algorithm

Claim edge Pi → Rj indicated that process Pj
may request resource Rj; represented by a
dashed line.
Claim edge converts to request edge when a
process requests a resource.
When a resource is released by a process,
assignment edge reconverts to a claim edge.
Resources must be claimed a priori in the
system.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 30

Resource-Allocation Graph For Deadlock
Avoidance

16

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 31

Unsafe State In Resource-Allocation
Graph

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 32

Banker’s Algorithm

Multiple instances.

Each process must a priori claim maximum
use.

When a process requests a resource it may
have to wait.

When a process gets all its resources it must
return them in a finite amount of time.

17

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 33

Data Structures for the Banker’s
Algorithm

Let n = number of processes, and m = number
of resources types

Available: Vector of length m. If available [j] = k,
there are k instances of resource type Rj
available.
Max: n x m matrix. If Max [i,j] = k, then process
Pi may request at most k instances of resource
type Rj.

.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 34

Data Structures for the Banker’s
Algorithm

Allocation: n x m matrix. If Allocation[i,j] = k then
Pi is currently allocated k instances of Rj.

Need: n x m matrix. If Need[i,j] = k, then Pi may
need k more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

.

18

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 35

Data Structures for the Banker’s
Algorithm (cont.)

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 36

Safety Algorithm

1.Let Work and Finish be vectors of length m
and n, respectively. Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2.Find and i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

19

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 37

Safety Algorithm

3.Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system
is in a safe state.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 38

Safety Algorithm -pseudocode

Algoritmo Safety
Work[i] = Available[i] (i=1,m)
Enquanto ∃ i tq Finish[i] = False && Need[i,j] <= Work[j] (j=1,m)

Work[k] += Allocated[i,k]; (k=1,m)
Finish[i] = True;

Fim_Enquanto
Se ∃ k tq Finish[k] = False então

UNSAFE /* e os processos com Finish[k] = false
Senão /* estão em Deadlock */

SAFE
Fim_Se

20

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 39

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.
If Requesti [j] = k then process Pi wants k
instances of resource type Rj.

1.If Requesti ≤ Needi go to step 2. Otherwise,
raise error condition, since process has
exceeded its maximum claim.

2.If Requesti ≤ Available, go to step 3.
Otherwise Pi must wait, since resources are
not available.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 40

Resource-Request Algorithm for process Pi

3.Pretend to allocate requested resources to Pi
by modifying the state as follows:

Available = Available - Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

4.Execute Safety Algorithm
If safe ⇒ the resources are allocated to Pi.
If unsafe ⇒ Pi must wait, and the old resource-
allocation state is restored, ie, roll back the
updates of step 3.

21

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 41

Banker’s Algorithm -pseudocode
Banker’s Algorithm

Request(Pi) = Request[i,k] -> Processo Pi pede Request[i,k] instancias do recurso Rk
Se Request[i,k] > Need[I,k] (k=1,m) Então

ERRO;
Senão

Se Request[i,k] > Available[k] (k=1,m) Então
Pi entra em Wait

Senão
// Simula entrega de recursos para Pi
Available[k] -= Request[i,k] (k=1,m)
Allocated[i,k] += Request[i,k] (k=1,m)
Need[i,k] -= Request[i,k] (k=1,m)
estado = Safety_Algorithm();
Se estado == SAFE Então

Pi obtem permissao para alocar os recursos
Senão

Pi entra em wait e faz-se o rollback em Available, Allocated e Need
Fim_Se

Fim_Se
Fim_Se

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 42

Example of Banker’s Algorithm

5 processes P0 through P4; 3 resource
types A (10 instances),
B (5instances, and C (7 instances).

22

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 43

Example of Banker’s Algorithm

Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 44

Example (Cont.)

The content of the matrix. Need is defined
to be Max – Allocation.

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

23

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 45

Example (Cont.)

The system is in a safe state since the
sequence < P1, P3, P4, P2, P0> satisfies
safety criteria.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 46

Example P1 Request (1,0,2) (Cont.)

Check that Request ≤ Available (that is,
(1,0,2) ≤ (3,3,2) ⇒ true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

24

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 47

Example P1 Request (1,0,2) (Cont.)

Executing safety algorithm shows that
sequence <P1, P3, P4, P0, P2> satisfies
safety requirement.
Can request for (3,3,0) by P4 be granted?
Can request for (0,2,0) by P0 be granted?

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 48

Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

25

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 49

Single Instance of Each Resource Type
Maintain wait-for graph

Nodes are processes.
Pi → Pj if Pi is waiting for Pj.

Periodically invoke an algorithm that searches
for a cycle in the graph.

An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n is
the number of vertices in the graph.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 50

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

26

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 51

Several Instances of a Resource Type

Available: A vector of length m indicates the
number of available resources of each type.

Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

Request: An n x m matrix indicates the current
request of each process. If Request [ij] = k, then
process Pi is requesting k more instances of
resource type. Rj.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 52

Detection Algorithm

1.Let Work and Finish be vectors of length m
and n, respectively Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true.
2.Find an index i such that both:

(a) Finish[i] == false
(b) Requesti ≤ Work

If no such i exists, go to step 4.

27

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 53

Detection Algorithm (Cont.)

3.Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then
the system is in deadlock state. Moreover, if
Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the
system is in deadlocked state.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 54

Example of Detection Algorithm

Five processes P0 through P4; three resource
types A (7 instances), B (2 instances), and C
(6 instances).
Snapshot at time T0:

AllocationRequestAvailable
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

28

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 55

Example of Detection Algorithm

AllocationRequestAvailable
A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in
Finish[i] = true for all i.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 56

Example (Cont.)

P2 requests an additional instance of type C.
Request

A B C
P00 0 0
P12 0 1

P2 0 0 1
P3 1 0 0
P4 0 0 2

29

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 57

Example (Cont.)

State of system?
Can reclaim resources held by process P0, but
insufficient resources to fulfill other processes;
requests.
Deadlock exists, consisting of processes P1,
P2, P3, and P4.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 58

Detection-Algorithm Usage

When, and how often, to invoke depends on:
How often a deadlock is likely to occur?
How many processes will need to be rolled back?

one for each disjoint cycle

If detection algorithm is invoked arbitrarily, there
may be many cycles in the resource graph and
so we would not be able to tell which of the
many deadlocked processes “caused” the
deadlock.

30

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 59

Recuperação
De

Deadlock

SCD – CO023

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 60

Recovery from Deadlock: Process
Termination

Process Termination:
Abort all deadlocked processes.
Abort one process at a time until the deadlock cycle is
eliminated. In which order should we choose to abort?
– Priority of the process.
– How long process has computed, and how much

longer to completion.
– Resources the process has used.
– Resources process needs to complete.
– How many processes will need to be terminated.
– Is process interactive or batch?

Rollback – return to some safe state, and restart
processes for that state.

31

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 61

Recovery from Deadlock: Resource
Preemption
Selecting a victim – minimize cost.

Rollback – return to some safe state, restart
process for that state.

Starvation – same process may always be
picked as victim, include number of rollback in
cost factor.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 62

Combined Approach to Deadlock
Handling

Combine the three basic approaches
prevention
avoidance
detection

allowing the use of the optimal approach for
each of resources in the system.
Partition resources into hierarchically ordered
classes.
Use most appropriate technique for handling
deadlocks within each class.

32

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 63

Deadlock Detection and Recovery

Allow a system to enter deadlock state.
Deadlock detection algorithm needed to detect
deadlock, and then some recovery scheme has to
apply.
When, and how often, to invoke a deadlock detection
algorithm?
If a deadlock detection algorithm is not invoked on
time, there may be many cycles in the resource-
allocation graph and so we would not be able to tell
which of the many deadlocked processes “caused”
the deadlock.

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 64

Deadlock Problem – Exercice
In an electronic fund transfer system, there are hundreds of
identical processes that work as follows. Each process
reads an input line specifying the account to be credited,
the account to be debited and an amount of money. The
process first locks both accounts and transfers the money,
releasing the locks when done.
When a process attempts to lock an account already locked
by another process, it will be blocked and it will stay
blocked until the account is released.
With many processes running in parallel, there is a very real
danger that having locked the account x, a process will be
unable to lock the account y (thus it will be blocked)
because y has been locked by another process now waiting
(and it is blocked) for x. Deadlock!!!
Devise a schema that is deadlock free.

33

April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 65

Traffic Deadlock – Exercice

