
Lecture Notes CMSC ���

CMSC ���� Computer Graphics�

Fall ����

Dave Mount

Lecture �� Course Introduction

�Thursday� Aug ��� �����
Read� Chapter � in Hill�

Computer Graphics� Computer graphics is concerned with producing images and animations �or
sequences of images� using a computer� This includes the hardware and software systems
used to make these images� The task of producing photo�realistic images is an extremely
complex one� but this is a 	eld that is in great demand because of the nearly limitless variety
of applications� The 	eld of computer graphics has grown enormously over the past �
��

years� and many software systems have been developed for generating computer graphics of
various sorts� This can include systems for producing ��dimensional models of the scene to
be drawn� the rendering software for drawing the images� and the associated user�interface
software and hardware� Our focus in this course will not be on how to use these systems to
produce these images �you can take courses in the art department for this� but in understanding
how these systems are constructed� and the underlying mathematics� physics� algorithms� and
data structures needed in the construction of these systems�

The 	eld of computer graphics dates back to the early ��
�s with Ivan Sutherland� one of
the pioneers of the 	eld� This began with the development of the �by current standards� very
simple software for performing the necessary mathematical transformations to produce simple
line�drawings of �� and ��dimensional scenes� As time went on� and the capacity and speed of
computer technology improved� successively greater degrees of realism were achievable� Today
it is possible to produce images that are practically indistinguishable from photographic images
�or at least that create a pretty convincing illusion of reality��

Overview� Given the state of current technology� it would be possible to design an entire university
major to cover everything �important� that is known about computer graphics� In this intro�
ductory course� we will attempt to cover only the meerest fundamentals upon which the 	eld
is based� Nonetheless� with these fundamentals� you will have a remarkably good insight into
how many of the modern video games and Hollywood animations are produced� This is true
since even very sophisticated graphics stem from the same basic elements that simple graphics
do� They just involve much more complex light and physical modeling� and more sophisticated
rendering techniques�

In this course we will deal primarily with the task of producing a single image from a �� or
��dimensional scene model� This is really a very limited aspect of computer graphics� For ex�
ample� it ignores the role of computer graphics in tasks such as visualizing things that cannot
be described as such scenes� This includes rendering of technical drawings including engineer�
ing charts and architectural blueprints� and also scienti	c visualization such as mathematical
functions� ocean temperatures� wind velocities� and so on� We will also ignore many of the
issues in producing animations� We will produce simple animations �by producing lots of sin�
gle images�� but issues that are particular to animation� such as motion blur� morphing and

�Copyright� David M� Mount� ����� Dept� of Computer Science� University of Maryland� College Park� MD� ������
These lecture notes were prepared by David Mount for the course CMSC ���� Computer Graphics� at the University
of Maryland� College Park� Permission to use� copy� modify� and distribute these notes for educational purposes and
without fee is hereby granted� provided that this copyright notice appear in all copies�

�

Lecture Notes CMSC ���

blending� temporal anti�aliasing� will not be covered� They are the topic of a more advanced
course in graphics�

Let us begin by considering the process of drawing �or rendering� a single image of a ��
dimensional scene� This is crudely illustrated in the 	gure below� The process begins by
producing a mathematical model of the object to be rendered� Such a model should describe
not only the shape of the object but its color� its surface 	nish �shiny� matte� transparent�
fuzzy� scaly� rocky�� Producing realistic models is extremely complex� but luckily it is not our
main concern� We will leave this to the artists and modelers� The scene model should also
include information about the location and characteristics of the light sources �their color�
brightness�� and the atmospheric nature of the medium through which the light travels �is it
foggy or clear�� In addition we will need to know the location of the viewer� We can think of
the viewer as holding a �synthetic camera�� through which the image is to be photographed�
We need to know the characteristics of this camera �its focal length� for example��

Viewer

Image plane

Object model

Light sources

Figure �� A typical rendering situation�

Based on all of this information� we need to perform a number of steps to produce our desired
image�

Projection� Project the scene from ��dimensional space onto the ��dimensional image plane
in our synthetic camera�

Color and shading� For each point in our image we need to determine its color� which is a
function of the object�s surface color� its texture� the relative positions of light sources�
and �in more complex illumination models� the indirect re�ection of light o� of other
surfaces in the scene�

Hidden surface removal� Elements that are closer to the camera obscure more distant ones�
We need to determine which surfaces are visible and which are not�

Rasterization� Once we know what colors to draw for each point in the image� the 	nal step
is that of mapping these colors onto our display device�

The Course in a Nutshell� The process that we have just described involves a number of steps�
from modeling to rasterization� The topics that we cover this semester will consider many of
these issues�

Basics�

Graphics Programming� OpenGL� graphics primitives� color� viewing� event�driven
I�O� GL toolkit� frame bu�ers�

Geometric Programming� Review of linear algebra� a�ne geometry� �points� vectors�
a�ne transformations�� homogeneous coordinates� change of coordinate systems�

Implementation Issues� Rasterization� clipping�

�

Lecture Notes CMSC ���

Modeling�

Model types� Polyhedral models� hierarchical models� fractals and fractal dimension�

Curves and Surfaces� Representations of curves and surfaces� interpolation� Hermite�
Bezier� B�spline curves and surfaces� NURBS�

Surface �nish� Texture�� bump�� and re�ection�mapping�

Projection�

��d transformations and perspective� Scaling� rotation� translation� orthogonal and
perspective transformations� ��d clipping�

Hidden surface removal� Back�face culling� z�bu�er method� depth�sort�

Issues in Realism�

Light and shading� Di�use and specular re�ection� the Phong and Gouraud shading
models�

Ray tracing� Ray�tracing model� re�ective and transparent objects� shadows�

Color� Gamma�correction� halftoning� and color models�

Lecture �� Graphics Systems and Models

�Tuesday� Sep� �� �����
Read� Chapter � in Hill�

Elements of Pictures� Computer graphics is all about producing pictures �realistic or stylistic�
by computer� Before discussing how to do this� let us 	rst consider the elements that make
up images and the devices that produce them� How are graphical images represented� There
are four basic types that make up virtually of computer generated pictures� polylines� �lled
regions� text� and raster images�

Polylines� A polyline �or more properly a polygonal curve is a 	nite sequence of line segments
joined end to end� These line segments are called edges� and the endpoints of the line
segments are called vertices� A single line segment is a special case� �An in	nite line�
which stretches to in	nity on both sides� is not usually considered to be a polyline�� A
polyline is closed if it ends where it starts� It is simple if it does not self�intersect� Self�
intersections include such things as two edge crossing one another� a vertex intersecting
in the interior of an edge� or more than two edges sharing a common vertex�

A polyline in the plane can be represented simply as a sequence of the �x� y� coordinates
of its vertices� This is su�cient to encode the geometry of a polyline� In contrast� the
way in which the polyline is rendered is determined by a set of properties call graphical
attributes� These include elements such as color� line width� and line style �solid� dotted�
dashed�� how consecutive segments are joined �rounded� mitered or beveled� see the book
for further explanation��

Many graphics systems support common special cases of curves such as circles� ellipses�
circular arcs� and Bezier and B�splines� We should probably include curves as a general�
ization of polylines� Most graphics drawing systems implement curves by breaking them
up into a large number of very small polylines� so this distinction is not very important�

Filled regions� Any simple� closed polyline in the plane de	nes a region consisting of an
inside and outside� �An utterly obvious fact from topology� which is notoriously hard to
prove�� We can 	ll any such region with a color or repeating pattern� In some instances
the bounding polyline itself is also drawn and others the polyline is not drawn�

�

Lecture Notes CMSC ���

Mitered BeveledRounded

Joint styles

Closed polyline Simple polyline

Figure �� Polylines�

A polyline with embedded �holes� also naturally de	nes a region that can be 	lled� In
fact this can be generalized by nesting holes within holes �alternating color with the
background color�� Even if a polyline is not simple� it is possible to generalize the notion
of interior� Given any point� shoot a ray to in	nity� If it crosses the boundary an odd
number of times it is colored� If it crosses an even number of times� then it is given the
background color�

without boundary self intersectingwith holeswith boundary

Figure �� Filled regions�

Text� Although we do not normally think of text as a graphical output� it occurs frequently
within graphical images such as engineering diagrams� Text can be thought of as a
sequence of characters in some font� As with polylines there are numerous attributes
which a�ect how the text appears� This includes the size �which is usually measured in
points� a unit of measure equal to �����inch�� weight �medium� bold�� slant �italic� roman��
and color�

Raster Images� Raster images are what most of us think of when we think of a computer
generated image� Such an image is a ��dimensional array of square �or generally rectan�
gular� cells called pixels �short for �picture elements��� Such images are sometimes called
pixel maps�

The simplest example is an image made up of black and white pixels� each represented
by a single bit �
 for black and � for white�� This is called a bitmap� For gray�scale
�or monochrome� raster images raster images� each pixel is represented by assigning it a
numerical value over some range �e�g�� from
 to ���� ranging from black to white�� There
are many possible ways of encoding color images� We will discuss these further below�

Graphics Devices� The standard interactive graphics device today is called a raster display� As
with a television� the display consists of a two�dimensional array of pixels� There are two
common types of raster displays�

Video displays� consist of a screen with a phosphor coating� that allows each pixel to be
illuminated momentarily when struck by an electron beam� A pixel is either illuminated
�white� or not �black�� The level of intensity can be varied to achieve arbitrary gray values�

�

Lecture Notes CMSC ���

Because the phosphor only holds its color brie�y� the image is repeatedly rescanned� at a
rate of at least �
 times per second�

Liquid crystal displays �LCD�s�� use an electronic 	eld to alter polarization of crystalline
molecules in each pixel� The light shining through the pixel is already polarized in some
direction� By changing the polarization of the pixel� it is possible to vary the amount of
light which shines through� thus controlling its intensity�

Irrespective of the display hardware� the computer program stores the image in a two�dimensional
array in RAM of pixel values �called a frame bu�er�� The display hardware produces the image
line�by�line �called raster lines�� A hardware device called a video controller constantly reads
the frame bu�er and produces the image on the display� The frame bu�er is not a device�
It is simply a chunk of RAM memory that has been allocated for this purpose� A program
modi	es the display by writing into the frame bu�er� and thus instantly altering the image
that is displayed� An example of this type of con	guration is shown below�

CPU

Display
Processor

Memory
Buffer

Frame

System bus

I/O Devices

Memory

System

Controller

Video Monitor

Raster Graphics with Display Processor

I/O DevicesCPU

Memory
Buffer

Frame

Controller

Video

System bus

Monitor

Simple Raster Graphics System

Figure �� Raster display architectures�

Complex graphics systems achieve great speed by providing separate hardware support� in
the form of a display processor �more commonly known as a graphics accelerator or graphics
card to PC users�� This relieves the computer�s main processor from much of the mundane
repetitive e�ort involved in maintaining the frame bu�er� A typical display processor will
provide assistance for a number of operations including the following�

Transformations� Rotations and scalings used for moving objects and the viewer�s location�

Clipping� Removing elements that lie outside the viewing window�

Projection� Applying the appropriate perspective transformations�

Texture mapping� Coloring objects by �painting� textures onto their surface�

�

Lecture Notes CMSC ���

Hidden�surface elimination� Determines which of the various objects that project to the
same pixel is closest to the viewer and hence is displayed�

An example of this architecture is shown in the 	gure above� These operations are often
pipelined� where each processor on the pipeline performs its task and passes the results to the
next phase� Given the increasing demands on a top quality graphics accelerator� they have
become quite complex� The following 	gure shows the architecture of existing accelerator�
�Don�t worry about understanding the various elements just now��

YUV/ RGBScaler

double data−rate memory
Synchronous DRAM or

Vertex

Texture
Pixel
cache

z−buffer

Memory controller and interface

VGA graphics controller

Scaler

YUV to RGB

Video Engine

decoder
DVD/ HDTV

D/A converter

Video stream

Graphics

overlay control

Hardware

Host bus interface

Triangle setup

Keyframe interpolation

Vertex skinning

Transform, clip, lighting

2−d Engine

Renderer Renderer

Texture units Texture units

Video I/O interface

Graphics port

Digital
monitor

Video
input
port

Analog
monitor

TMDS
transmitter

Ratiometric

cache

cache

cursor

Pallette and

stream

Command engine

expander

Display engine

3−d Engine

Figure �� Graphics accelerator architecture�

Color� The method chosen for representing color depends on the characteristics of the graphics
output device �e�g�� whether it is additive as are video displays or subtractive as are printers��
It also depends on the number of bits per pixel that are provided� called the pixel depth� For
example� the most method used currently in video and color LCD displays is a ���bit RGB
representation� Each pixel is represented as a mixture of red� green and blue components�
and each of these three colors is represented as a ��bit quantity �
 for black and ��� for the
brightest color��

In many graphics systems it is common to add a fourth component� sometimes called alpha�
denoted A� This component is used to achieve various special e�ects� most commonly in
describing how opaque a color is� We will discuss its use later in the semester� For now we
will ignore it�

�

Lecture Notes CMSC ���

In some instances ���bits may be unacceptably large� For example� when downloading images
from the web� ���bits of information for each pixel may be more than what is needed� A
common alternative is to used a color map� also called a color look�up�table �LUT�� �This is
the method used in most gif 	les� for example�� In a typical instance� each pixel is represented
by an ��bit quantity in the range from
 to ���� This number is an index to a ����element
array� each of whose entries is a ����bit RGB value� To represent the image� we store both
the LUT and the image itself� The ��� di�erent colors are usually chosen so as to produce the
best possible reproduction of the image� For example� if the image is mostly blue and red� the
LUT will contain many more blue and red shades than others�

123 015 154 247

R G B
Frame buffer

122

121

124

125

Colormap

176 002

123031

Figure �� Color�mapped color�

Although this is 	ne for most nongraphics applications �e�g�� special highlighting for icons and
fonts�� it is woefully inadequate for displaying realistic images with lots of colors and shading�
So how is it that you can display high quality images on� say netscape� The answer involves
a fair amount of clever trickery to fool the eye into seeing many shades of colors where only
a small number of distinct colors exist� This process is called digital halftoning� Examples of
this that you are familiar with are photographs in newspapers� Many small black dots are
used to approximate shades of gray�

Lecture �� Drawing in OpenGL� Glut

�Thursday� Sep 	� �����
Read� Chapter � in Hill�

The OpenGL API� Today we will begin discussion of using OpenGL� and its related libraries�
Glu �OpenGL utility library� and Glut �an OpenGL utility toolkit�� OpenGL is designed to
be a machine�independent graphics library� but one that can take advantage of the structure
of typical hardware accelerators for computer graphics�

The Main Program� Before discussing how to actually draw shapes� we will begin with the basic
elements of how to create a window� OpenGL was intentionally designed to be independent
of any speci	c window system� It is the Glut toolkit which provides the necessary tools for
requesting the windows be created and providing interaction with I�O devices� Let us begin
by considering a typical main program� and then dissecting its various elements� This creates
a window that is �

 pixels wide and �

 pixels high� located in the upper left corner of the
display�

�

Lecture Notes CMSC ���

Typical OpenGL�Glut Main Program

int main�int argc� char�� argv� �� program arguments

�

glutInit��argc� argv�� �� initialize glut and gl

glutInitDisplayMode�GLUT�DOUBLE 	 GLUT�RGB���� double buffering and RGB color

glutInitWindowSize�
��� ����� �� initial window size

glutInitWindowPosition��� ��� �� initial window position

glutCreateWindow�argv���� �� create window

���initialize callbacks here �described below����

myInit��� �� your own initializations

glutMainLoop��� �� turn control over to glut

return �� �� we don�t really return here

�

Initialization� The arguments given to the main program �argc and argv� are the command�
line arguments supplied to the program� We pass these into the main initialization pro�
cedure� glutInit��� This procedure must be called before any others� It processes �and
removes� command�line arguments that may be of interest to Glut and the window system
and does general initialization of Glut and OpenGL�

Display Mode� The next procedure� glutInitDisplayMode��� performs initializations in�
forming OpenGL how to set up the frame bu�er� As we mentioned in class� the frame
bu�er stores the color information for the pixels as well as other information �e�g� depth
for hidden surface removal�� The system needs to know how we are representing colors
of our general needs in order to determine the depth �number of bits� to assign for each
pixel in the frame bu�er�

Display Mode Meaning

GLUT RGB Use RGB colors
GLUT RGBA Use RGB plus � �for transparency�
GLUT INDEX Use colormapped colors �not recommended�
GLUT DOUBLE Use double bu�ering �recommended�
GLUT SINGLE Use single bu�ering �not recommended�
GLUT DEPTH Use depth�bu�er �for hidden surface elim��

Figure �� Arguments to glutInitDisplayMode���

Its argument is a logical�or �using the operator ���� of a number of possible options� First
o�� we need to tell the system how colors will be represented� There are three methods�
of which two are fairly commonly used� GLUT RGB or GLUT RGBA� The 	rst uses standard
RGB colors� and is the default� The second requests RGBA coloring� In this color system
there is a fourth component �A or ��� which indicates the opaqueness of the color �� �
fully opaque�
 � fully transparent�� This is useful in creating transparent e�ects� We
will discuss this later this semester�

The next option speci	es single� or double�bu�ering� GLUT SINGLE or GLUT DOUBLE� re�
spectively� Remember that whatever is written to the frame bu�er is immediately trans�
fered to the display� When you write into the frame bu�er� you usually set it to some
background color and then draw in the new contents� Unless the drawing happens very

�

Lecture Notes CMSC ���

fast� the user will be annoyed by this continuous blanking out and redrawing of the im�
age� In double�bu�ering� you maintain two bu�ers� The front bu�er is the one which
is displayed� You draw to the other one� called the back bu�er� Then to update the
image� you simply swap the two bu�ers� The swapping process is very fast� and appears
to happen essentially instantaneously� Double�bu�ering requires twice the bu�er space�
but is almost always preferred with interactive graphics�

One other option that we will need later with ��dimensional graphics will be hidden
surface removal� This fastest and easiest �but most space�consuming� way to do this is
with a depth bu�er� which records not only the color of each pixel� but its distance from
the viewer� This is made possible with the option GLUT DEPTH� For this program it is not
needed� and so has been omitted�

Window setup� The command glutInitWindowSize�int width� int height� sets the de�
sired window size in pixels� The command glutInitWindowPosition�int x� int y�

sets its position� where the �x� y� coordinates indicate the upper left corner of the window�
and where �
�
� is the upper left corner of the display� Note that these are considered
suggestions to the window manager on how to set up your window� Depending on its
layout policies� and the size of the display� it may not honor your requests�

The command� glutCreateWindow�char �title�� creates a window and gives it the
speci	ed title� The title can be any string� We pass in argv���� which contains the name
of your program�

Callbacks� Virtually all interactive graphics programs are event driven� Unlike traditional pro�
grams that read from a standard input 	le� a graphics program must be prepared at any time
for input from any number of sources �mouse or keyboard for example��

In OpenGL this is done through the use of callbacks� The graphics program instructs the
system to invoke a particular procedure whenever� say� the mouse button is clicked� The
graphics program registers for the various events in which it is interested� This involves telling
the window system that when an event of a particular type occurs� please call a particular
procedure whose name you provide�

There is one event which any application program must list for� called a display event� This
is signaled when the window is 	rst displayed� or whenever an obscuring window has moved
away� thus revealing portions of a hidden window� Other events include mouse clicks� motion
of the mouse �without clicking�� keyboard hits� Note that you are only signaled about events
that happen to your window� �For example� entering text into another program�s dialogue box
will not generate a keyboard event for your program��

In an animation� the user may not be providing any input at all� In these cases the program
can register for either a timer event or an idle event� An idle event is generated every time
the system has nothing better to do� This can generate a huge number of events� A better
approach is to request a timer event� In a timer event you request that your program go to
sleep for some period of time and that it be �awakened� by an event some time later� In
glutTimerFunc�� the 	rst argument gives the sleep time as an integer in milliseconds and the
last argument is an integer identi	er� which is passed into the callback function�

For example� to specify the display function and mouse callbacks� you create procedures for
these events� and initialize them as follows�

Typical Callback Setup

int main�int argc� char�� argv�

�

���

glutDisplayFunc�myDraw�� �� set up the callbacks

Lecture Notes CMSC ���

Event Callback request Callback prototype �all return void�
�Re�display glutDisplayFunc myDisplay��

�Re�size window glutReshapeFunc myResize�int w� int h�

Mouse button glutMouseFunc myMouse�int b� int s� int x� int y�

Mouse motion glutPassiveMotionFunc myMotion�int x� int y�

Keyboard key glutKeyboardFunc myKeyboard�unsigned char c� int x� int y�

Timer event glutTimerFunc myTimer�int id�

Idle event glutIdleFunc myIdle��

Figure �� Common callbacks and the associated registration functions�

glutReshapeFunc�myResize��

glutMouseFunc�myMouse��

glutKeyboardFunc�myKeyboard��

glutTimerFunc���� myTimeOut� ���

���

�

Callback Contents� What does a typical callback function do� This depends entirely on the
application that you are designing� Here are some examples of things that a typical call�
back might contain� Note that the timer callback and the reshape callback both invoke
glutPostRedisplay��� This procedure informs OpenGL that the state of the scene has
changed and should be redrawn �by calling your drawing procedure�� This might be requested
in other callbacks as well�

Typical Callback Code

void myDraw�void� � ���insert scene redrawing code here ��� �

void myResize�int w� int h� �

windowWidth � w� windowHeight � h� �� save window width and height

���update the projection transformation���

glutPostRedisplay��� �� request redisplay

�

void myMouse�int b� int s� int x� int y� �

switch �b� �

case GLUT�LEFT�BUTTON�

if �s �� GLUT�DOWN� �

���left button pushed down���

�

else if �s �� GLUT�UP� �

���left button released���

�

break�

���

�

�

void myKeyboard�unsigned char c� int x� int y� �

switch �c� �

�

Lecture Notes CMSC ���

case �q�� exit���� �� �q� means quit

break�

���

�

�

void myTimeOut�int id� �

���advance the state of animation incrementally���

glutPostRedisplay��� �� request redisplay

glutTimerFunc���� myTimeOut� ��� �� request next timer event

�

Lecture �� Drawing in OpenGL� Drawing and Viewports

�Tuesday� Sep ��� �����
Read� Chapter � in Hill�

Basic Drawing� We have shown how to create a window� how to get user input� but we have not
discussed how to get graphics to appear in the window� Before being able to draw a scene�
OpenGL needs to know the following information� what are the objects to be drawn� how is
the image to be projected onto the window� and how lighting and shading are to be performed�
To begin with� we will consider a very the simple case� There are only ��dimensional objects�
no lighting or shading� and relatively little user interaction�

1

0.5

0

0 10.5

Figure � Drawing produced by the simple display function�

We will consider a simple drawing routine for the picture shown in the 	gure� We assume
that our idealized drawing region is a unit square over the real interval �
� ��� Unlike Glut�s
convention� here the coordinates will be �oating point values and the origin will be in the lower
left corner� This is strange� but it seems to be an unfortunate fact of life in graphics� Virtually
all window systems work with the origin in the upper left �and Glut followed this convention��
and most graphics systems use OpenGL�s lower right convention�

The display callback function is shown below� To draw the image we will 	rst erase whatever
is in the image� then do our drawing� and 	nally swap bu�ers �so that what we have drawn
becomes visible�� This function 	rst draws a red diamond and then �on top of this� it draws
a blue rectangle� Let us assume double bu�ering is being performed� and so the last thing to
do is invoke glutSwapBuffers�� to make everything visible�

Simple Display Function

void simpleDisplay�� �� display function

�

��

Lecture Notes CMSC ���

glClear�GL�COLOR�BUFFER�BIT�� �� clear the window

glColor
f����� ���� ����� �� set color to red

glBegin�GL�POLYGON�� �� draw a red diamond

glVertex�f������ ������

glVertex�f������ ������

glVertex�f������ ������

glVertex�f������ ������

glEnd���

glColor
f����� ���� ����� �� set color to blue

glRectf������ ����� ����� ������ �� draw a blue rectangle

glutSwapBuffers��� �� swap buffers

�

Clearing the Window� The command glClear�� clears the window� by overwriting it with the
background color� This is set by the call

glClearColor�GLfloat R� GLfloat G� GLfloat B� GLfloat A��

The type GLfloat is OpenGL�s rede	nition of the standard float� To be correct� you should
use the approved OpenGL types �e�g� GLfloat� GLdouble� GLint� rather than the obvious
counterparts �float� double� and int�� Usually these are the same� but not always� For
example on the CSD machines GLint is de	ned to be long�

Recall that the A value is set to � for opaque colors� Thus to set the background color to black�
we would use glClearColor����� ���� ���� 	���� and to set it to blue use glClearColor�����
���� 	��� 	���� �Note� For debugging purposes� it is often a good idea to use an uncommon
color� since black is the color that most often arises when a bug is present�� Since the back�
ground color is usually independent of drawing� the function glClearColor�� is typically set
in one of your initialization procedures�

Clearing the window involves resetting information within the frame bu�er� As we men�
tioned before� the frame bu�er may store di�erent types of information �color and depth
information� for example�� Typically when the window is cleared� we want to clear every�
thing� But sometimes� in order to achieve special e�ects� we may clear one part of the bu�er
without clearing others� So the glClear�� command allows the user to select what is to be
cleared� In this case we only have color in the depth bu�er� which is selected by the option
�GL COLOR BUFFER BIT� If we had a depth bu�er to be cleared it as well we could do this by
�or�ing together� �GL COLOR BUFFER BIT � GL DEPTH BUFFER BIT��

Drawing Attributes� The OpenGL drawing commands describe the geometry of the object that
you want to draw� More speci	cally� all OpenGL is based on drawing objects with straight
sides� so it su�ces to specify the vertices of the object to be drawn� The manner in which the
object is displayed is determined by various drawing attributes �color� point size� line width�
etc���

For example� the command glColor
f�� sets the drawing color� The arguments are three
GLfloat�s� giving the R� G� and B components of the color� In this case� RGB � ���
�
�
means pure red� Once set� the attribute applies to all subsequently de	ned objects� until it
is set to some other value� Thus� we could set the color� draw three polygons with the color�
then change it� and draw 	ve polygons with the new color�

��

Lecture Notes CMSC ���

This call illustrates a common feature of many OpenGL commands� namely �exibility in ar�
gument types� The su�x ��f� means that three �oating point arguments �actually GLfloat�s�
will be given� For example� glColor
d�� takes three double �or GLdouble� arguments�
glColor
ui�� takes three unsigned int arguments� and so on� For �oats and doubles� the
arguments range from
 �no intensity� to � �full intensity�� For integer types �byte� short� int�
long� the input is assumed to be in the range from
 �no intensity� to its maximum possible
value �full intensity�� Thus� for integer arguments MAXINT would be full intensity�

If we were using RGBA color rather than RGB color� we could use glColor�f�� instead�
�For opaque colors set A � ��
�� In some cases it is convenient to store your colors in an
arrays with three elements� The su�x �v� means that the argument is a vector� For example
glColor
fv�� expects a single argument� a vector containing three float�s�

Drawing commands� OpenGL supports drawing of a number of di�erent types of objects� The
simplest is glRectf��� which draws a 	lled rectangle� All the others are complex objects
consisting of a �generally� unpredictable number of elements� This is handled in OpenGL by
the constructs glBegin�mode� and glEnd��� Between these two commands a list of vertices
is given� which de	nes the object� The sort of object to be de	ned is determined by the mode
argument of the glBegin�� command� Some of the possible modes are illustrated in the 	gure
below� For details on the semantics of the drawing methods� see the reference manuals�

Note that in the case of GL POLYGON only convex polygons �internal angles less than ��
 degrees�
are supported� You must subdivide nonconvex polygons into convex pieces�

glBegin�mode��

glVertex�v��� glVertex�v��� ���

glEnd���

v0

v1 v2

vv6

v4

5

GL_TRIANGLE_FAN

v

v1 v2

v3 v4

v5

6v7

0

GL_QUADS

v5

3

v

v3

v2
v1

v0

GL_POINTS

v5

v4v

v2
v1

v0

v

GL_LINES

v5

v4

v2
v1

v

4 v3

GL_LINE_STRIP

v5

v4

v2
v1

v0

v3

GL_LINE_LOOP

v5

v2
v1

v0
v4

v3

GL_POLYGON

v5

v4

v2
v1

v0

v3 v

GL_TRIANGLES

v3

v0 v1

v2 v5

v4

0

v6

GL_TRIANGLE_STRIP

v0 v1

v3

v2

v5

v4

v7

v6

3

GL_QUAD_STRIP

Figure �
� Some OpenGL object de	nition modes�

In the example above we only de	ned the x� and y�coordinates of the vertices� How does
OpenGL know whether our object is ��dimensional or ��dimensional� The answer is that it
does not know� OpenGL represents all vertices as ��dimensional coordinates internally� �This
may seem wasteful� but remember that OpenGL is designed primarily for ��d graphics�� If

��

Lecture Notes CMSC ���

you do not specify the z�coordinate� then it simply sets the z�coordinate to zero� By the way�
glRectf�� always draws its rectangle on the z �
 plane�

Between any glBegin�����glEnd�� pair� there is a restricted set of OpenGL commands that
may be given� This includes glVertex�� and also other command attribute commands� such
as glColor
f��� At 	rst it may seem a bit strange that you can assign di�erent colors to the
di�erent vertices of an object� but this turns out to be a useful feature� Depending on the
shading model� it allows you to produce shapes whose color blends from one color to another�

There are a number of drawing attributes other than color� For example� for points it is possible
adjust their size �with glPointSize���� For lines� it is possible to adjust their width �with
glLineWidth���� and create dashed or dotted lines �with glLineStipple���� It is also possible
to pattern or stipple polygons �with glPolygonStipple���� When we discuss ��dimensional
graphics we will discuss many more properties that are used in shading and hidden surface
removal�

After drawing the diamond� we change the color to blue� and then invoke glRectf�� to draw
a rectangle� This procedure takes four arguments� the �x� y� coordinates of any two opposite
corners of the rectangle� in this case �
����
���� and �
����
����� �There are also versions of
this command that takes double or int arguments� and vector arguments as well�� We could
have drawn the rectangle by drawing a GL POLYGON� but this form is easier to use�

Projection Transformation� In the simple drawing procedure� we said that we were assuming
that the idealized drawing area was a unit square over the interval �
� �� with the origin in
the lower left corner� The transformation that maps the idealized drawing region �in �� or
��dimensions� to the window is called the projection�

Generally� specifying ��dimensional perspective projections is a tricky business� which we will
discuss in detail later this semester� But for this simple ��dimensional example� it is relatively
simple� There is a transformation matrix called the projection matrix� which OpenGL main�
tains internally� �In the next lecture we will discuss OpenGL�s rather complex transformation
mechanism in greater detail� In the mean time some of this may seem a bit arcane�� Since
matrices are often cumbersome to work with� OpenGL �actually Glu� provides a number of
relatively simple and natural ways of de	ning this matrix� For our ��dimensional example� we
will do this by simply informing OpenGL of the rectangular region of two dimensional space
that makes up our idealized drawing region� This is handled by the command

gluOrtho�d�left� right� bottom� top��

First note that the pre	x is �glu� and not �gl�� Also� note that the ��d� designator stands
for ���dimensional�� as does not indicate the argument types� There is a more general com�
mand� glOrtho��� for doing ��dimensional orthogonal projections� All arguments are of type
GLdouble� The arguments specify the x�coordinates �left and right� and the y�coordinates
�bottom and top� of the rectangle into which we will be drawing� Any drawing that we do
outside of this region will automatically be clipped away by OpenGL� The code to set the
projection is given below�

Setting a Two�Dimensional Projection

glMatrixMode�GL�PROJECTION�� �� set projection matrix

glLoadIdentity��� �� initialize to identity

gluOrtho�D����� ���� ���� ����� �� map unit square to viewport

The 	rst command tells OpenGL that we are modifying the projection transformation� �OpenGL
maintains three di�erent types of transformations� as we will see later�� Most of the commands

��

Lecture Notes CMSC ���

that manipulate these matrices do so by multiplying some matrix times the current matrix�
Thus� we initialize the current matrix to the identity� which is done by glLoadIdentity���
This code usually appears in some initialization procedure or possibly in the reshape callback�

Viewports� OpenGL does not assume that you are mapping your graphics to the entire window�
Often you want to subdivide your window into a set of smaller subwindows and draw separate
pictures in each window� The subwindow into which the current graphics are being drawn is
called a viewport� The viewport is typically the entire display window� but it may generally
be any rectangular subregion�

This quantity depends on the dimensions of our window� Thus� every time the window is resized
�and this includes when the window is created originally� we should readjust the viewport�
For example� the reshape callback would contain the following call if they entire window is the
viewport�

Setting the Viewport in the Reshape Callback

void myReshape�int winWidth� int winHeight� �� reshape window

�

���

glViewport ��� �� winWidth� winHeight�� �� reset viewport

���

�

The general form is

glViewport�GLint x� GLint y� GLsizei width� GLsizei height��

where �x� y� are the pixel coordinates of the lower�left corner of the viewport� and width and
height are the width and height of the viewport in pixels�

(x,y)
width

height

bottom

top

left right

Drawing gluOrtho2d glViewport

Figure ��� Projection and viewport transformations�

Lecture �� Drawing in OpenGL� Transformations

�Thursday� Sep ��� �����
Read� Chapter � in Hill� Today�s material is not really covered in the text �except for ��d in
Chapter ���

More about Drawing� So far we have discussed how to draw simple ��dimensional objects using
OpenGL� Suppose that we want to draw more complex scenes� For example� we want to draw
objects that move and rotate or to change the projection� We could do this by computing
�ourselves� the coordinates of the transformed vertices� but OpenGL provides some tools to
handle this automatically� Today we consider how this is done in ��space� This will form
a foundation for the more complex transformations� which will be needed for ��dimensional
viewing�

��

Lecture Notes CMSC ���

Transformations� Linear transformations are at the very heart of computer graphics� They arise
in various ways�

��� Moving rigid objects as part of an animation�

��� Change of coordinate systems� which are used when objects stored relative to one reference
frame are to be accessed in a di�erent reference frame� One important case of this is that
of mapping objects stored in a standard coordinate system to a coordinate system that
is associated with the camera �or viewer��

��� Transformations used to project objects from the idealized drawing window to the view�
port� and mapping the viewport to the graphics display window�

��� Transformations that indicate how textures are to be wrapped around objects� as part of
texture mapping�

OpenGL maintains three sets of matrices for performing various transformation operations�
These are�

Modelview matrix� Used for transforming objects in the scene and for changing the coor�
dinates into a form that is easier for OpenGL to deal with� �Used for tasks ��� and ���
above��

Projection matrix� Handles parallel and perspective projections� �Used for task �����

Texture matrix� This is used in specifying how textures are mapped onto objects� �Used for
task �����

We will discuss the texture matrix later in the semester� when we talk about texture map�
ping� There is one more transformation that is not handled by these matrices� This is the
transformation that maps the viewport to the display� It is set by glViewport���

For each matrix type� OpenGL maintains a stack of matrices� The current matrix� that is the
one on the top of the stack� is the one that is applied at any given time� The stack mechanism
allows you to save the current matrix �by pushing it on the stack� and restoring it later �by
popping the stack�� We will discuss the entire process of implementing a�ne and projection
transformations later in the semester� For now� we�ll give just basic information on OpenGL�s
approach to handling matrices and transformations�

OpenGL has a number of commands for handling matrices� In order to know which matrix
�modelview� projection� or texture� to which an operation applies� you can set the current
matrix mode� This is done with

glMatrixMode�mode�

where mode is either GL MODELVIEW� GL PROJECTION� or GL TEXTURE� The initial mode is
GL MODELVIEW� Since this is the most common mode� the common convention is to assume
that you are always in modelview mode� and if you want to modify either of the other two ma�
trices� you 	rst change the mode to the desired mode �projection or texture�� perform whatever
operations you want� and then change the mode back to modelview�

Once the matrix mode is set� you can perform various operations to the stack� �OpenGL has
a somewhat funny way of handling its the stack� Note that most operations below �except
glPushMatrix��� destroy the current matrix at the top of the stack��

glLoadIdentity��� Sets the current matrix to the identity matrix�

glLoadMatrix��M�� Loads �copies� a given matrix over the current matrix� The ��� refers to
the coordinate type� which is either �f� or �d� for GLfloat or GLdouble�

��

Lecture Notes CMSC ���

glMultMatrix��M�� Multiplies the current matrix by a given matrix and replaces the current
matrix with this result�

glPushMatrix��� Pushes a copy of the current matrix on top the stack�

glPopMatrix��� Pops the current matrix o� the stack�

We will discuss how matrices like M are presented to OpenGL later in the semester� There
are a number of other matrix operations� which we will also discuss later�

Applying transformations� How do you apply a transformation to a point� The answer is that
it happens automatically� In particular� every vertex or geometric object generated by a call
to glVertex�� is passed through a series of matrices� as shown in the 	gure below� Thus�
transformation behave much like drawing attributes� you set them� do some drawing� alter
them� do more drawing� etc�

Modelview

Matrix

Projection Viewport

Matrix TransformationPoint

Standard
coordinates

Camera (or eye)
coordinates

Normalized
device
coordinates

Window
coordinates

normalization
and clipping

Perspective

Figure ��� Transformation pipeline�

Modelview Transformations� The modelview matrix is useful for applying transformations to
objects� which would otherwise require you to perform your own linear algebra� Suppose that
rather than drawing a rectangle that is aligned with the coordinate axes� you want to draw a
rectangle that is rotated by �
 degrees �counterclockwise� and centered at some point �x� y��
You could compute the coordinates of the vertices yourself �using the built�in library routines
for trigonometric functions�� but OpenGL provides a way of doing this transformation more
easily�

Suppose that we are drawing within the unit square�
 � x� y � �� Suppose we have a
���
��
sized rectangle to be drawn centered at location �x� y�� We could draw an unrotated rectangle
with the following command�

glRectf�x � ��	� y � ��	� x � ��	� y � ��	�

Now let�s draw a rotated rectangle� Let us assume that the matrix mode is modelview �this is
the default�� Because our rotation operation will destroy the modelview matrix� we will begin
by saving it� by using the command glPushMatrix��� �Saving the modelview matrix in this
manner is not always required� but it is considered good form�� Then we will compose this
matrix with an appropriate rotation matrix� Then we draw the rectangle �in upright form��
Since all points are transformed by the modelview matrix prior to projection� this will have
the e�ect of rotating our rectangle� Finally� we will pop o� this matrix �so future drawing is
not rotated��

To perform the rotation� we will use the command glRotatef�ang� x� y� z�� All arguments
are GLfloat�s� �Or you could use glRotated�� which takes GLdouble arguments�� This com�
mand constructs a matrix which performs a rotation in ��dimensional space counterclockwise

��

Lecture Notes CMSC ���

by angle ang degrees� about the vector �x� y� z�� It then composes �or multiplies� this matrix
with the current modelview matrix� In our case the angle is �
 degrees� To achieve a rotation
in the �x� y� plane the vector of rotation would be the z�unit vector� �
�
� ��� Here is how the
code might look �but beware� this conceals a subtle error��

Drawing an Rotated Rectangle �First Attempt�

glPushMatrix��� �� save the current matrix

glRotatef������ ���� ���� ����� �� rotate by �� degrees CCW

glRectf�x����� y����� x����� y������ �� draw the rectangle

glPopMatrix��� �� restore the old matrix

The order of the rotation relative to the drawing command may seem confusing at 	rst� You
might think� �Shouldn�t we draw the rectangle 	rst and then rotate it��� The key is to
remember that whenever you draw �using glRectf�� or glBegin�����glEnd���� the points are
automatically transformed using the modelview matrix� So� in order to rotate� we 	rst modify
the modelview matrix� then draw the points �hence applying the rotation automatically��
Popping the matrix at the end is important� otherwise future drawing requests would also be
subject to the same modelview matrix and the same rotation�

Although this may seem backwards� it is the way in which almost all object transformations
are performed in OpenGL�

��� Push the matrix stack�

��� Apply �i�e�� multiply� all the desired transformation matrices with the current matrix�

��� Draw your object �the transformations will be applied automatically�� and

��� Pop the matrix stack�

But something is wrong with this example given above� What is it� The answer is that the
rotation is performed about the origin of the coordinate system� not about the center of the
rectangle and we want� Fortunately� there is an easy 	x� Conceptually� we will draw the
rectangle centered at the origin� then rotate it by �
 degrees� and 	nally translate �or move�
it by the vector �x� y�� To do this� we will need to use the command glTranslatef�x� y�

z�� All three arguments are GLfloat�s� �And there is version with GLdouble arguments��
This command creates a matrix which performs a translation by the vector �x� y� z�� and then
composes �or multiplies� it with the current matrix� Recalling that all ��dimensional graphics
occurs in the z �
 plane� the desired translation vector is �x� y�
��

So the conceptual order is ��� draw� ��� rotate� ��� translate� But remember that you need to
set up the transformation matrix before you do any drawing� That is� if �v represents a vertex
of the rectangle� and R is the rotation matrix and T is the translation matrix� and M is the
current modelview matrix� then we want to compute the product

M �T �R��v��� �M � T �R � �v�
SinceM is on the top of the stack� we need to 	rst apply translation �T � toM � and then apply
rotation �R� to the result� and then do the drawing ��v�� Note that the order of application is
the exact reverse from the conceptual order� This may seems confusing �and it is�� But it is
easy to remember�

OpenGL�s Backwards Transformation Rule� Conceptualize your transformation as 	rst
drawing about the origin and then transforming your object to its desired location� Then
implement this in OpenGL by applying these transformations and drawing in reverse
order�

��

Lecture Notes CMSC ���

Drawing an Rotated Rectangle �Correct�

glPushMatrix��� �� save the current matrix �M�

glTranslatef�x� y� ��� �� apply translation �T�

glRotatef������ ���� ���� ����� �� apply rotation �R�

glRectf������ ����� ���� ����� �� draw rectangle at the origin

glPopMatrix��� �� restore the old matrix �M�

Projection Revisited� Last time we discussed the use of gluOrtho�D�� for doing simple ��dimensional
projection� This call does not really do any projection� Rather� it computes the desired pro�
jection transformation and multiplies it times whatever is on top of the current matrix stack�
So� to use this we need to do a few things� First� set the matrix mode to GL PROJECTION� load
an identity matrix �just for safety�� and the call gluOrtho�d��� Since most transformations
are done in modelview mode� we will set the mode back�

Two Dimensional Projection

glMatrixMode�GL�PROJECTION�� �� set projection matrix

glLoadIdentity��� �� initialize to identity

gluOrtho�D�left� right� bottom top�� �� set the drawing area

glMatrixMode�GL�MODELVIEW�� �� restore modelview mode

If you only set the projection once� then initializing the matrix to the identity is typically
redundant �since this is the default value�� but it is a good idea to make a habit of loading the
identity for safety� If the projection does not change throughout the execution of our program�
and so we include this code in our initializations� It might be put in the reshape callback if
reshaping the window alters the projection�

How is it done� How does gluOrtho�D�� and glViewport�� set up the desired transformation
from the idealized drawing window to the viewport� Well� actually OpenGL does this in two
steps� 	rst mapping from the window to canonical � � � window centered about the origin�
and then mapping this canonical window to the viewport� The reason for this intermediate
mapping is that the clipping algorithms are designed to operate on this 	xed sized window
�recall the 	gure given earlier�� The intermediate coordinates are often called normalized device
coordinates�

As an exercise in deriving linear transformation� let us consider doing this all in one shot� Let
W denote the idealized drawing window and let V denote the viewport� Let Wr� Wl� Wb�
and Wt denote the left� right� bottom and top of the window �and similarly for V �� We wish
to derive a linear transformation that maps a point �x� y� in window coordinates to a point
�x�� y�� in viewport coordinates�

The book describes one way of doing this in Chapter �� so I�ll do it in an entirely di�erent
way� Let f�x� y� denote this function� Since the function is linear� and clearly it operates on
x and y independently� clearly

�x�� y�� � f�x� y� � �ax c� dy e��

where a� c� d and e� depend on the window and viewport coordinates� Let�s derive what a
and c are using simultaneous equations� We know that the x�coordinates for the left and right
sides of the window �Wl and Wr� should map to the left and right sides of the viewport �Vl
and Vr�� Thus we have

aWl c � Vl aWr c � Vr�

�

Lecture Notes CMSC ���

We can solve these equations simultaneously� By subtracting them to eliminate c we have

a �
Vr � Vl
Wr �Wl

�

Plugging this back into to either equation and solving for c we have

c � Vl � aWl

A similar derivation for d and e yields

d �
Vt � Vb
Wt �Wb

e � Vb � dWb

Lecture �� Geometry and Geometric Programming

�Tuesday� Sep �
� �����
Read� Chapter � in Hill�

Geometric Programming� There are many areas of computer science that involve computation
with geometric entities� This includes not only computer graphics� but also areas like computer�
aided design� robotics� computer vision� and geographic information systems� In this and the
next few lectures we will consider how this can be done� and how to do this in a reasonably
clean and painless way�

Computer graphics deals largely with the geometry of lines and linear objects in ��space�
because light travels in straight lines� For example� here are some typical geometric problems
that arise in designing programs for computer graphics�

Geometric Intersections� Given a cube and a ray� does the ray strike the cube� If so which
face� If the ray is re�ected o� of the face� what is the direction of the re�ection ray�

Orientation� Three noncollinear points in ��space de	ne a unique plane� Given a fourth
point q� is it above� below� or on this plane�

Transformation� Given unit cube� what are the coordinates of its vertices after rotating it
�
 degrees about the vector ��� �� ���

Change of coordinates� A cube is represented relative to some standard coordinate system�
What are its coordinates relative to a di�erent coordinate system �say� one centered at
the camera�s location��

Coordinate�free programming� If you look at almost any text on computer graphics �ours in�
cluded� you will 	nd that the section on geometric computing begins by introducing coordi�
nates� then vectors� then matrices� Then what follows are many long formulas involving many
� � � matrices� These formulas are handy� because �along with some procedures for matrix
multiplication� we can solve many problems in computer graphics� Unfortunately� from the
perspective of software design they are a nightmare� because the intention of the programmer
has been lost in all the matrix crunching� The product of a matrix and a vector can have many
meanings� It may represent a change of coordinate systems� it may represent a transformation
of space� and it may represent a perspective projection�

We will attempt to develop a clean� systematic way of thinking about geometric computa�
tions� This method is called coordinate�free programming �so named by Tony DeRose� its
developer�� Rather than reducing all computations to vector�matrix products� we will express
geometric computations in the form of high�level geometric operations� These in turn will
be implemented using low�level matrix computations� but if you use a good object�oriented

�

Lecture Notes CMSC ���

programming language �such as C or Java� these details are hidden� Henceforth� when
the urge to write down an expression involving point coordinates comes to you� ask yourself
whether it is possible to describe this operation in a high�level coordinate�free form�

Ideally� this should be the job of a good graphics API� Indeed� OpenGL does provide the
some support for geometric operations� For example� it provides procedures for performing
basic a�ne transformations� Unfortunately� a user of OpenGL is still very aware of underlying
presence of vectors and matrices in programming� A really well designed API would allow us
to conceptualize geometry on a higher level�

Geometries� Before beginning we should discuss a little history� Geometry is one of the oldest
�if not the oldest� branches of mathematics� Its origins were in land surveying �and hence
its name� geo�earth� and metria�measure�� Surveying became an important problem as the
advent of agriculture required some way of de	ning the boundaries between one family�s plot
and anothers�

Ancient civilizations �the Egyptians� for example� must have possessed a fairly sophisticated
understanding of geometry in order to build complex structures like the pyramids� However�
it was not until much later in the time of Euclid in Greece in the �rd century BC� that
the mathematical 	eld of geometry was 	rst axiomatized and made formal� Euclid worked
without the use of a coordinate system� It was much later in the ��th century when cartesian
coordinates were developed �by Descartes�� which allowed geometric concepts to be expressed
arithmetically�

In the late �th century a revolutionary shift occured in people�s view of geometry �and
mathematics in general�� Up to this time� no one questioned that there is but one geometry�
namely the Euclidean geometry� Mathematicians like Lobachevski and Gauss� suggested that
there may be other geometric systems which are just as consistent and valid as Euclidean
geometry� but in which di�erent axioms apply� These are called noneuclidean geometries� and
they played an important role in Einstein�s theory of relativity�

We will discuss three basic geometric systems� a�ne geometry� Euclidean geometry� and pro�
jective geometry� A�ne geometry is the most basic of these� Euclidean geometry builds on
a�ne geometry by adding the concepts of angles and distances� Projective geometry is more
complex still� but it will be needed in performing perspective projections�

A�ne Geometry� The basic elements of a�ne geometry are scalars �which we can just think of
as being real numbers�� points and free vectors �or simply vectors�� Points are used to specify
position� Free vectors are used to specify direction and magnitude� but have no 	xed position�
The term �free� means that vectors do not necessarily emanate from some position �like the
origin�� but �oat freely about in space� There is a special vector called the zero vector� �
� that
has no magnitude� such that �v �
 � �
 �v � �v� Note in particular that we did not de	ne a
zero point or �origin� for a�ne space� �Although we will eventually have to break down and
de	ne something like this in order� simply to be able to de	ne coordinates for our points��

You might ask� why make a distinction between points and vectors� Both can be represented
in the same way as a list of coordinates� The reason is to avoid hiding the intention of the
programmer� For example� it makes perfect sense to multiply a vector and a scalar �we stretch
the vector by this amount�� It is not so clear that it makes sense to multiply a point by
a scalar� By keeping these concepts separate� we make it possible to check the validity of
geometric operations�

We will use the following notational conventions� Points will be denotes with upper�case
Roman letters �e�g�� P � Q� and R�� vectors will be denoted with lower�case Roman letters �e�g��
u� v� and w� and often to emphasize this we will add an arrow �e�g�� �u� �v� �w�� and scalars

��

Lecture Notes CMSC ���

will be represented as lower case Greek letters �e�g�� �� �� ��� In our programs scalars will be
translated to Roman �e�g�� a� b� c��

The table below lists the valid combinations of these entities� The formal de	nitions are pretty
much what you would expect� Vector operations are applied in the same way that you learned
in linear algebra� For example� vectors are added in the usual �tail�to�head� manner� The
di�erence P � Q of two points results in a free vector directed from Q to P � Point�vector
addition R �v is de	ned to be the translation of R by displacement �v� Note that some
operations �e�g� scalar�point multiplication� and addition of points� are explicitly not de	ned�

vector � scalar � vector � vector � vector�scalar scalar�vector multiplication
vector � vector vector � vector � vector � vector vector�vector addition
vector � point � point point�point di�erence
point � point vector � point � point � vector point�vector addition

vector addition

vu

u+v
Q

P−Q

point subtraction

P

point−vector addition

R

R+v

v

Figure ��� A�ne operations�

A�ne Combinations� Although the algebra of a�ne geometry has been careful to disallow point
addition and scalar multiplication of points� there is a particular combination of two points
that we will consider legal� The operation is called an a�ne combination�

Let�s say that we have two points P and Q and want to compute their midpoint R� or more
generally a point R that subdivides the line segment PQ into the proportions � and ���� for
some � � �
� ��� �The case � � ��� is the case of the midpoint�� This could be done by taking
the vector Q� P � scaling it by �� and then adding the result to P � That is�

R � P ��Q� P ��

Another way to think of this point R is as a weighted average of the endpoints P and Q�
Thinking of R in these terms� we might be tempted to rewrite the above formula in the
following �illegal� manner�

R � ��� ��P �Q�

Observe that as � ranges from
 to �� the point R ranges along the line segment from P to Q�
In fact� we may allow to become negative in which case R lies to the left of P �see the 	gure��
and if � � �� then R lies to the right of Q� The special case when
 � � � �� this is called a
convex combination�

2
3

2
3

1
3Q+ P

P

Q

R = P + (Q−P)
P

Q Q

P
α < 0

α > 1

0 < α < 1

Figure ��� A�ne combinations�

In general� we de	ne the following two operations for points in a�ne space�

��

Lecture Notes CMSC ���

A�ne combination� Given a sequence of points P�� P�� � � � � Pn� an a�ne combination is any
sum of the form

��P� ��P� � � � �nPn�

where ��� ��� � � � � �n are scalars satisfying
P

i�i � ��

Convex combination� Is an a�ne combination� where in addition we have �i �
 for � �
i � n�

A�ne and convex combinations have a number of nice uses in graphics� For example� any
three noncollinear points determine a plane� There is a ��� correspondence between the points
on this plane and the a�ne combinations of these three points� Similarly� there is a ���
correspondence between the points in the triangle determined by the these points and the
convex combinations of the points� In particular� the point �����P �����Q �����R is the
centroid of the triangle�

We will sometimes be sloppy� and write expressions of the following sort �which is clearly
illegal��

R �
P Q

�
�

We will allow this sort of abuse of notation provided that it is clear that there is a legal a�ne
combination that underlies this operation�

To see whether you understand the notation� consider the following questions� Given three
points in the ��space� what is the union of all their a�ne combinations� �Ans� the plane
containing the � points�� What is the union of all their convex combinations� �Ans� The
triangle de	ned by the three points and its interior��

Euclidean Geometry� In a�ne geometry we have provided no way to talk about angles or dis�
tances� Euclidean geometry is an extension of a�ne geometry which includes one additional
operation� called the inner product�

The inner product is an operator that maps two vectors to a scalar� The product of �u and �v
is denoted commonly denoted ��u��v�� There are many ways of de	ning the inner product� but
any legal de	nition should satisfy the following requirements

Positiveness� ��u� �u� �
 and ��u� �u� �
 if and only if �u � �
�

Symmetry� ��u��v� � ��v� �u��

Bilinearity� ��u��v �w� � ��u��v� ��u� �w�� and ��u� ��v� � ���u��v�� �Notice that the symmetric
forms follow by symmetry��

See a book on linear algebra for more information� We will focus on a the most familiar
inner product� called the dot product� To de	ne this� we will need to get our hands dirty with
coordinates� Suppose that the d�dimensional vector �u is represented by the coordinate vector
�u�� u�� � � � � ud���� Then de	ne

�u � �v �
d��X
i��

uivi�

Note that inner �and hence dot� product is de	ned only for vectors� not for points�

Using the dot product we may de	ne a number of concepts� which are not de	ned in regular
a�ne geometry� Note that these concepts generalize to all dimensions�

Length� of a vector �v is de	ned to be j�vj �
p
�v � �v�

��

Lecture Notes CMSC ���

Normalization� Given any nonzero vector �v� de	ne the normalization to be a vector of unit
length that points in the same direction as �v� We will denote this by !v�

!v �
�v

j�vj �

Distance between points� dist�P�Q� � jP �Qj�
Angle� between two nonzero vectors �u and �v �ranging from
 to �� is

ang��u��v� � cos��
�
�u � �v
j�ujj�vj

�
� cos���!u � !v��

This is easy to derive from the law of cosines�

Orthogonality� �u and �v are orthogonal �or perpendicular� if �u � �v �
�
Orthogonal projection� Given a vector �u and a nonzero vector �v� it is often convenient to

decompose �u into the sum of two vectors �u � �u� �u�� such that �u� is parallel to �v and
�u� is orthogonal to �v�

�u� �
��u � �v�
��v � �v��v �u� � �u� �u��

�As an exercise� verify that �u� is orthogonal to �v�� Note that we can ignore the denomi�
nator if we know that �v is already normalized to unit length� The vector �u� is called the
orthogonal projection of �u onto �v�

θ

u

v

Angle between vectors

u1

u2

Orthogonal projection

v

u

Figure ��� The dot product and its uses�

Lecture �� Coordinate Frames and Homogeneous Coordinates

�Thursday� Sep ��� �����
Read� Chapter � in Hill�

Coordinate Frames and Coordinates� Last time we presented the basic elements of a�ne and
Euclidean geometry� points� vectors� and operations such as a�ne combinations� However� as
of yet we have no mechanism for de	ning these objects� Today we consider the lower level issues
of how these objects are represented using coordinate frames and homogeneous coordinates�

The 	rst question is how to represent points and vectors in a�ne space� We will begin by
recalling how to do this in linear algebra� and generalize from there� We will assume familiarity
with concepts from linear algebra� �If any of this seems unfamiliar� please consult any text in
linear algebra�� We know from linear algebra that if we have ��linearly independent vectors�
�u�� �u�� and �u�� in ��space� then we can represent any other vector in ��space uniquely as a
linear combination

�v � ���u� ���u� ���u��

��

Lecture Notes CMSC ���

for some choice of scalars ��� ��� ��� Thus� given any such vectors� we can use them to represent
any vector in terms of a triple of scalars ���� ��� ���� In general d linearly independent vectors
in dimension d is called a basis�

The most familiar basis� called the standard basis� is composed of the three unit vectors whose
coordinates are ���
�
�T � �
� ��
�T � �
�
� ��T � Recall from matrix algebra that the superscript
T indicates matrix transpose� which means that these are to be thought of a column vectors�
rather than row vectors� With only one exception this semester �if and when we discuss
normals� all vectors will be represented as column vectors� so if the T is missing� it is probably
just due to sloppiness� In this case the column vector ���� ��� ���T is called the Cartesian
coordinates of the vector �v� These vectors have the nice property of being of length � and are
all mutually orthogonal� Such a basis is called an orthonormal basis� and these are generally
most popular�

To de	ne a coordinate frame for an a�ne space we would like to 	nd some way to represent
any object �point or vector� as a sequence of scalars� Thus� it seems natural to generalize the
notion of a basis in linear algebra to de	ne a basis in a�ne space� Note that free vectors alone
are not enough to de	ne a point �since we cannot de	ne a point by any combination of vector
operations�� To specify position� we will designate an arbitrary a point� denoted O� to serve as
the origin of our coordinate frame� Observe that for any point P � P �O is just some vector �v�
Such a vector can be expressed uniquely as a linear combination of basis vectors� Thus� given
the origin point O and any set of basis vectors �ui� any point P can be expressed uniquely as
a sum of O and some linear combination of the basis vectors�

P � ���u� ���u� ���u� O�

for some sequence of scalars ��� ��� ��� This is how we will de	ne a coordinate frame for a�ne
spaces� In general we have�

De�nition� A coordinate frame for a d�dimensional a�ne space consists of a point� called the
origin �which we will denote O� of the frame� and a set of d linearly independent basis
vectors�

In the 	gure below we show a point P and vector �w� We have also given two coordinate frames�
F and G� Observe that P and �w can be expressed as functions of F and G as follows�

P � � � F��e� � � F��e� F�O
�w � � � F��e� � � F��e�

P � � �G��e� � �G��e� G�O
�w � �� �G��e�
 �G��e�

Notice that the position of �w is immaterial� because in a�ne geometry vectors are free to �oat
where they like�

The Coordinate Axiom and Homogeneous Coordinates� Recall that our goal was to repre�
sent both points and vectors as a list of scalar values� To put this on somewhat more formal
footing� we introduce the following axiom�

Coordinate Axiom� For every point P in a�ne space�
 � P � �
� and � � P � P �

��

Lecture Notes CMSC ���

w

F.O F.e0

F.e1

G.e0
G.O

=(−1, 0, 0)

P[G]

w[G]

=(1, 2, 1)

=(2, 1, 0)

P[F]

w[F]

=(3, 2, 1)

P G.e1

Figure ��� Coordinate Frame�

This is a serious perversion of our rules for a�ne geometry� but it is allowed just to make the
notation easier to understand� Using this notation� we can now write the point and vector of
the 	gure in the following way�

P � � � F��e� � �F��e� � � F�O
�w � � � F��e� � �F��e�
 � F�O

Thus� relative the the coordinate frame F � hF��e�� F��e�� F�Oi� we can express P and �w as
coordinate vectors relative to frame F as

P �F � �

�
� �
�
�

�
A and �w�F � �

�
� �
�

�
A �

We will call these homogeneous coordinates� In some linear algebra conventions� vectors are
written as row vectors and some as column vectors� We will stick with OpenGL�s conventions�
of using column vectors� but we may be sloppy from time to time�

Beware� The term �vector� has two meanings� one as an free vector in an a�ne space� and
now as a coordinate vector� that is� a list of scalar values� The 	rst is a geometric object� and
the second is a representation that is used for both free�vectors and for points� Usually� it will
be clear from context which meaning is intended�

In general� to represent points and vectors in d�space� we will use coordinate vectors of length
d �� Points have a last coordinate of �� and vectors have a last coordinate of
� This
representation is called the homogeneous coordinates of a point or vector� relative to the frame
F � �Some authors put the homogenizing coordinate 	rst rather than last� There are actually
good reasons for doing this� But we will stick with standard engineering conventions and place
it last��

Properties of homogeneous coordinates� The choice of appending a � for points and a
 for
vectors may seem to be a rather arbitrary choice� Why not just reverse them or use some
other scalar values� The reason is that this particular choice has a number of nice properties
with respect to geometric operations�

For example� consider two points P and Q whose coordinate representations relative to some
frame F are P �F � � ��� �� ��T and Q�F � � ��� �� ��T � respectively� Consider the vector

�v � P � Q�

If we apply the di�erence rule that we de	ned last time for points� and then convert this vector
into it coordinates relative to frame F � we 	nd that �v�F � � ���� ��
�T � Thus� to compute the

��

Lecture Notes CMSC ���

F.O F.e0

F.e1
(P−Q)[F]

=(5, 1, 1)

P[F]

Q[F]

=(3, 2, 1)

Q
=(−2, 1, 0)

P−QP

Figure ��� Coordinate arithmetic�

coordinates of P � Q we simply take the component�wise di�erence of the coordinate vectors
for P and Q� The ��components nicely cancel out� to give a vector result�

In general� a nice feature of this representation is the last coordinate behaves exactly as it
should� Let U and V be either points or vectors� After a number of operations of the forms
U V or U � V or �U �when applied to the coordinates� we have�

� If the last coordinate is �� then the result is a point�
� If the last coordinate is
� then the result is a vector�
� Otherwise� this is not a legal a�ne operation�

This fact can be proved rigorously� but we won�t worry about doing so�

This suggests how one might do type checking for a coordinate�free geometry system� Points
and vectors are stored using a common base type� which simply consists of a ��element array of
scalars� We allow the programmer to perform any combination of standard vector operations
on coordinates� Just prior to assignment� check that the last coordinate is either
 or ��
appropriate to the type of variable into which you are storing the result� This allows much
more �exibility in creating expressions� such as�

centroid � P Q R

�
�

which would otherwise fail type checking� �Unfortunately� this places the burden of checking
on the run�time system� One approach is to de	ne the run�time system so that type checking
can be turned on and o�� Leave it on when debugging and turn it o� for the 	nal version��

Alternative coordinate frames� Any geometric programming system must deal with two con�
�icting goals� First� we want points and vectors to be represented with respect to some
universal coordinate frame �so we can operate on points and vectors by just operating on their
coordinate lists�� But it is often desirable to de	ne points relative to some convenient local
coordinate frame� For example� latitude and longitude may be a 	ne way to represent the
location of a city� but it is not a very convenient way to represent the location of a character
on this page�

What is the most universal coordinate frame� There is nothing intrinsic to a�ne geometry
that will allow us to de	ne such a thing� so we will do so simply by convention� We will 	x
a frame called the standard frame from which all other objects will be de	ned� It will be an
orthonormal frame� meaning that its basis vectors are orthogonal to each other and each is of
unit length� We will denote the origin by O and the basis vectors by �ei� The coordinates of

��

Lecture Notes CMSC ���

the elements of the standard frame �in ��space� are de	ned to be�

�e� �

�
BB�
�

�
CCA �e� �

�
BB�

�

�
CCA �e� �

�
BB�

�

�
CCA O �

�
BB�

�

�
CCA

Change of coordinates �example�� One of the most important geometric operations in com�
puter graphics is that of converting points and vectors from one coordinate frame to an�
other� Recall from the earlier 	gure that relative to frame F we have P �F � � ��� �� ��T �
and �w�F � � ��� ��
�T � We derived the coordinates relative to frame G by inspection� but
how could we do this computationally� Our goal is to 	nd scalars ��� ��� ��� such that
P � ��G�e� ��G�e� ��G�O�
Given that F is a frame� we can describe the elements of G in terms of of F � If we do so
we have G�e��F � � �������
�T � G�e��F � � �
� ��
�T � and G�O�F � � ��� �� ��T � Using this
representation� it follows that ��� ��� and �� must satisfy�

� �
�
�

�
A � ��

�
� ��

��

�
A ��

�
�

�

�
A ��

�
� �
�
�

�
A �

If you break this vector equation into its three components� you get three equations� and
three unknowns� If you solve this system of equations �by methods that you learned in linear
algebra� then you 	nd that ���� ��� ��� � ��� �� ��� Hence we have

P �F � �

�
� �
�
�

�
A � �

�
� ��

��

�
A �

�
�

�

�
A �

�
� �
�
�

�
A

� � �G�e��F � � �G�e��F � � �G�O�F ��
Therefore� the coordinates of P relative to G are

P �G� �

�
� �
�
�

�
A �

As an exercise� see whether you can derive the fact that the coordinates for �w are ����
�
�T �
Change of coordinates �general case�� We would like to generalize this for an arbitrary pair of

frames� For concreteness� let us assume that F is the standard frame� and suppose that we
de	ne G relative to this standard frame by giving the coordinates for the basis vectors G�e��
G�e� and origin point G�O relative to frame F �

G�e��F � � �g��� g���
�
T �

G�e��F � � �g��� g���
�
T �

G�O�F � � �g��� g��� ��
T �

Further suppose that we know the coordinate of some point P relative to F � namely P �F � �
���� ��� ���T � We know that �� � � since P is a point� but we will leave it as a variable to get
an expression that works for free vectors as well�

Our goal is to determine P �G� � ���� ��� ���T � Therefore the � values must satisfy�

P � ��G�e� ��G�e� ��G�O�

��

Lecture Notes CMSC ���

This is an expression in a�ne geometry� If we express this in terms of F �s coordinate frame
we have�
� ��

��
��

�
A � ��

�
� g��

g��

�
A ��

�
� g��

g��

�
A ��

�
� g��

g��
�

�
A �

�
� g�� g�� g��

g�� g�� g��

 �

�
A
�
� ��

��
��

�
A �

Let M denote the � � � matrix above� Note that its columns are the basis elements for G�
expressed as coordinate vectors in terms of F �

M �

�
� g�� g�� g��

g�� g�� g��

 �

�
A �

�
G��e��F �

����� G��e��F �
����� G�O�F �

�
�

Thus� given P �G� � ���� ��� ���T we can multiply this matrix by P �G� to get P �F � � ���� ��� ���T �

P �F � �M � P �G�

But this is not what we wanted� We wanted to get P �G� in terms of P �F �� To do this we
compute the inverse of M � denoted M��� We claim that if this is a valid basis �that is� if the
basis vectors are linearly independent� then this inverse will exist� Hence we have

P �G� �M�� � P �F ��

In the case of this simple � � �� this inverse is easy to compute� However� when we will be
applying this� we will normally be operating in ��space� and the matrices will now be � � �
matrices and the inversion is more involved�

Important Warning� OpenGL stores matrices in column�major order� This means that elements
of a �� � matrix are stored by unraveling them column�by�column��

BB�
a� a� a� a��
a� a� a� a��
a� a	 a�� a��
a� a
 a�� a��

�
CCA

Unfortunately� C and C �and most other programming languages other than Fortran�
store matrices in row�major order� Consequently� if you declare a matrix to be used� say� in
glLoadMatrix�� you might use

GLdouble M������

But to access the element in row i and column j� then you need to refer to it by M�j��i�

�not M�i��j� as you normally would�� Alternatively� you can declare it GLdouble M�	�� and
perform your own indexing�

Lecture �� A	ne Transformations

�Tuesday� Sep ��� �����
Read� Chapter � in Hill�

�

Lecture Notes CMSC ���

A�ne Transformations� So far we have been stepping through the basic elements of geometric
programming� We have discussed points� vectors� and their operations� and coordinate frames
and how to change the representation of points and vectors from one frame to another� Our
next topic involves how to map points from one place to another� Suppose you want to draw
an animation of a spinning ball� How would you de	ne the function that maps each point on
the ball to its position rotated through some given angle�

We will consider a limited� but interesting class of transformations� called a�ne transfor�
mations� These include �among others� the following transformations of space� translations�
rotations� uniform and nonuniform scalings �stretching the axes by some constant scale factor��
re�ections ��ipping objects about a line� and shearings �which deform squares into parallelo�
grams�� They are illustrated in the 	gure below�

Rotation Translation Uniform
Scaling Scaling

Reflection ShearingNonuniform

Figure ��� Examples of a�ne transformations�

These transformations all have a number of things in common� For example� they all map
lines to lines� Note that some �translation� rotation� re�ection� preserve the lengths of line
segments and the angles between segments� Others �like uniform scaling� preserve angles but
not lengths� Others �like nonuniform scaling and shearing� do not preserve angles or lengths�

All of the transformation listed above preserve basic a�ne relationships� �In fact� this is the
de	nition of an a�ne transformation�� For example� given any transformation T of one of the
above varieties� and given two points P and Q� and any scalar ��

R � ��� ��P �Q � T �R� � �� � ��T �P � �T �Q��

�We will leave the proof that each of the above transformations is a�ne as an exercise�� Putting
this more intuitively� if R is the midpoint of segment PQ� before applying the transformation�
then it is the midpoint after translation�

Matrix Representation of A�ne Transformations� Perhaps a more important consequence
of the preservation of a�ne relations is the following�

R � ��F��e� ��F��e� ��O � T �R� � ��T �F��e�� ��T �F��e�� ��T �O��

The equation on the left is how we represent the point �or vector� R in terms of the coordinate
frame F � This implication shows that if we know the image of the frame elements under the
transformation� then we know the image R under the transformation� Alternatively� if we
express R as a homogeneous coordinate column vector R�F � � ���� ��� ���T � �Recall that the
superscript T means to transpose this row vector into a column vector�� Then we may write

�

Lecture Notes CMSC ���

the above relationship in matrix form

T �R��F � �

�
T �F��e���F �

����� T �F��e���F �
����� T �F�O��F �

��� ��
��
��

�
A �

Here the columns of the array are the representation �relative to F � of the images of the
elements of the frame under T � This implies that applying an a�ne transformation �in coor�
dinate form� is equivalent to multiplying the coordinates by a matrix� In dimension d this is
a �d ��� �d �� matrix�
If this all seems a bit abstract� here are some concrete applications of this to the basic a�ne
transformations described above� Rather than considering this in the context of ��dimensional
transformations� let�s consider it in the more general setting of ��dimensional transformations�
The two dimensional cases can be extracted by just ignoring the rows and columns for the
z�coordinates�

Translation� Translation by a 	xed vector �v maps any point P to P �v� Note that vectors
are not altered by translation� �Why not��

Suppose that relative to the standard frame� v�F � � ��x� �y� �z�
�T are the homogeneous
coordinates of �v� The three unit vectors are una�ected by translation� and the origin is
mapped to O �v� whose homogeneous coordinates are ��x� �y� �z� ��� Thus� by the rule
given earlier� the homogeneous matrix representation for this translation transformation
is

T ��v� �

�
BB�
�

 �x

 �
 �y

 � �z

 �

�
CCA �

Scaling� Uniform scaling is a transformation which is performed relative to some central 	xed
point� We will assume that this point is the origin of the standard coordinate frame�
Given a scalar �� this transformation maps the object �point or vector� with coordinates
��x� �y� �z� �w�T to ���x� ��y� ��z� �w�T �

In general� it is possible to specify separate scaling factors for each of the axes� This
is called nonuniform scaling� The unit vectors are each stretched by the corresponding
scaling factor� and the origin is unmoved� Thus� the transformation matrix has the
following form�

S��x� �y� �z� �

�
BB�

�x

 �y

 �z

 �

�
CCA �

Both points and vectors are scaled�

Re�ection� A re�ection in the plane is given a line and maps points by �ipping the plane
about this line� A re�ection in ��space is given a plane� and �ips points in space about
this plane� In this case� re�ection is just a special case of scaling� but where the scale
factor is negative� For example� to re�ect points about the xy�coordinate plane� we want
to scale the z�coordinate by ��� Using the scaling matrix above� we have the following
transformation matrix�

Fz �

�
BB�
�

 �

 ��

 �

�
CCA �

The cases for the other two coordinate frames are similar�

��

Lecture Notes CMSC ���

Rotation� In its most general form� rotation is de	ned to to take place about some 	xed point�
and around some 	xed vector in space� We will consider the simplest case where the 	xed
point is the origin of the coordinate frame� and the vector is one of the coordinate axes�
There are three basic rotations� about the x� y and z�axes� In each case the rotation is
through an angle 	 �given in radians�� The rotation is assumed to be in accordance with
a right�hand rule� if your right thumb is aligned with the axes of rotation� then positive
rotation is indicated by your 	ngers�

Consider the rotation about the z�axis� The z�unit vector and origin are unchanged�
The x�unit vector is mapped to �cos 	� sin 	�
�
�T � and the y�unit vector is mapped to
�� sin 	� cos 	�
�
�T � Thus the rotation matrix is�

Rz�	� �

�
BB�
cos 	 � sin 	

sin 	 cos 	

 �

 �

�
CCA �

x,y

z

x,y

x y(sh , sh ,1)z

x
θ

(cos , sin)θ θ

y
(−sin , cos)

Rotation (about z) Shear (orthogonal to z)

θ θ

Figure �� Rotation and shearing�

For the other two axes we have

Rx�	� �

�
BB�
�

 cos 	 � sin 	

 sin 	 cos 	

 �

�
CCA � Ry�	� �

�
BB�

cos 	
 sin 	

 �

� sin 	
 cos 	

 �

�
CCA �

Shearing� A shearing transformation is the hardest of the group to visualize� Think of a
shear as a transformation that maps a cube into a parallelogram� We will consider the
simplest form� in which we start with a unit cube whose lower left corner coincides with
the origin� Consider one of the axes� say the z�axis� The face of the cube that lies on the
xy�coordinate plane does not move� The face that lies on the plane z � �� is translated
by a vector �shx� shy�� In general� a point P � �px� py� pz� �� is translated by the vector
pz�shx� shy�
�
�� This vector is orthogonal to the z�axis� and its length is proportional
to the z�coordinate of P � This is called an xy�shear� �The yz� and xz�shears are de	ned
analogously��

Under the xy�shear� the origin and x� and y�unit vectors are unchanged� The z�unit
vector is mapped to �shx� shy� ��
�T � Thus the matrix for this transformation is�

Hxy�	� �

�
BB�
�
 shx

 � shy

 �

 �

�
CCA �

Shears involving any other pairs of axes are de	ned similarly�

��

Lecture Notes CMSC ���

Composing A�ne Transformations� There are many more a�ne transformations� A�ne trans�
formations are closed under composition� �This is not hard to prove�� This means that if T and
S are two a�ne transformations� then the composition �T 	 S�� de	ne �T 	 S��P � � T �S�P ��
is also an a�ne transformation� Since T and S can be represented in matrix form as homo�
geneous matrices MT and MS � then it is easy to see that we can express their composition as
the matrix product MTMS � Notice that the last matrix is the one that is applied 	rst to the
point or vector�

One way to compute more complex transformation is compose a series of the basic transforma�
tions together� For example� suppose that you wanted to rotate about a vertical line �parallel
to z� passing through the point P � We could do this by 	rst translating the plane by the
vector O � P � so that the �old� point P now coincides with the �new� origin� Then we could
apply our rotation about the �new� origin� Finally� we translate space back by P � O so that
the origin is mapped back to P � The resulting sequence of matrices would be

Rz�	� P � � T �P � O� �Rz�	� � T �O � P ��

Lecture
� More Geometric Operators

�Thursday� Sep ��� �����
Read� See Chapter � in Hill� The line clipping algorithm is di�erent from the one described in the
text� and orientations are not described in the text�

De�ning complex transformations� We have already seen that it is possible to de	ne complex
a�ne transformations by composing a number of simple �basic� transformations� We also
showed that to construct the matrix for any transformation� it su�ces to simply concatenate
the images of the basis elements for the standard frame� This suggests an alternative approach
for creating complex transformation matrices� Determine the images of the the basis elements
of the standard frame� then you can simply create the appropriate transformation matrix by
concatenating these images� This is often an easier approach than composing many basic
transformations�

To illustrate the idea� consider the ��dimensional example illustrated below� We want to
compute a transformation that maps the square object shown on the left to position P and
rotated about P by some angle 	� To do this� we can de	ne two frames F and G� such that
the object is in the same position relative to each frame� as shown in the 	gure�

(cos , sin)θ θθ(−sin , cos) θ

P
θθ

O F.O

G.O

Q

Q’

Figure �
� Constructing a�ne transformations�

For example� suppose for simplicity that F is just the standard frame� �We�ll leave the more
general case� where neither F nor G is the standard frame as an exercise�� Then the frames G
is composed of the elements

G��e� �

�
� cos 	
sin 	

�
A G��e� �

�
� � sin 	

cos 	

�
A G�O �

�
� �
�
�

�
A �

��

Lecture Notes CMSC ���

To compute the transformation matrix A� we express the basis elements of G relative to F �
and then concatenate them together� We have

A �

�
� cos 	 � sin 	 �
sin 	 cos 	 �

 �

�
A �

As a check� consider the lower right corner point Q of the original square� whose coordinates
relative to F are ���
� ��T � The product A �Q�F � yields

A �Q�F � �
�
� cos 	 � sin 	 �
sin 	 cos 	 �

 �

�
A
�
� �

�

�
A �

�
� � cos 	
� sin 	

�

�
A � P �F �

�
� cos 	
sin 	

�
A �

These are the coordinates of Q�� as expected�

More Geometric Operators� So far we have discussed two important geometric operations used
in computer graphics� change of coordinate systems and a�ne transformations� We saw that
both operations could be expressed as the product of a matrix and vector �both in homogeneous
form�� Next we consider two more geometric operations� which are of a signi	cantly di�erent
nature�

Cross Product� Here is an important problem in ��space� You are given two vectors and you want
to 	nd a third vector that is orthogonal to these two� This is handy in constructing coordinate
frames with orthogonal bases� There is a nice operator in ��space� which does this for us�
called the cross product�

The cross product is usually de	ned in standard linear ��space �since it applies to vectors� not
points�� So we will ignore the homogeneous coordinate here� Given two vectors in ��space� �u
and �v� their cross product is de	ned to be

�u� �v �

�
� uyvz � uzvy

uzvx � uxvz
uxvy � uyvx

�
A �

A nice mnemonic device for remembering this formula� is to express it in terms of the following
symbolic determinant�

�u� �v �

������
�ex �ey �ez
ux uy uz
vx vy vz

������ �
Here �ex� �ey � and �ez are the three coordinate unit vectors for the standard basis� Note that the
cross product is only de	ned for a pair of free vectors and only in ��space� The cross product
has the following important properties�

Skew symmetric� �u��v � ���v � �u�� It follows immediately that �u� �u �
 �since it is equal
to its own negation��

Nonassociative� Unlike most other products that arise in algebra� the cross product is not
associative� That is

��u� �v� � �w
� �u� ��v � �w��

Bilinear� The cross product is linear in both arguments� For example�

�u� ���v� � ���u� �v��

�u� ��v �w� � ��u� �v� ��u� �w��

��

Lecture Notes CMSC ���

Perpendicular� If �u and �v are not linearly dependent� then �u� �v is perpendicular to �u and
�v� and is directed according the the right�hand rule�

Angle and Area� The length of the cross product vector is related to the lengths of and
angle between the vectors� In particular�

j�u� �vj � jujjvj sin	�

where 	 is the angle between �u and �v� The cross product is usually not used for computing
angles because the dot product can be used to compute the cosine of the angle �in any
dimension� and it can be computed more e�ciently� This length is also equal to the area
of the parallelogram whose sides are given by �u and �v� This is often useful�

Orientation� Given two real numbers p and q� there are three possible ways they may be ordered�
p
 q� p � q� or p � q� We may de	ne an orientation function� which takes on the values ��

� or �� in each of these cases� That is� Or��p� q� � sign�q � p�� where sign�x� is either ���

� or � depending on whether x is negative� zero� or positive� respectively� An interesting
question is whether it is possible to extend the notion of order to higher dimensions�

The answer is yes� but rather than comparing two points� in general we can de	ne the orien�
tation of d � points in d�space� We de	ne the orientation to be the sign of the determinant
consisting of their homogeneous coordinates �with the homogenizing coordinate given 	rst��
For example� in the plane and ��space the orientation of three points P � Q� R is de	ned to be

Or��P�Q�R� � sign

������
� � �
px qx rx
py qy ry

������ � Or��P�Q�R� S� � sign

��������
� � � �
px qx rx sx
py qy ry sy
pz qz rz sz

��������
�

Or(P,Q,R) = +1

R

QP

R

Q

P

Or(P,Q,R) = 0

Q

P
R

Or(P,Q,R) = −1

Q R

S

Or(P,Q,R,S) = +1

P

Figure ��� Orientations in � and � dimensions�

What does orientation mean intuitively� The orientation of three points in the plane is � if
the triangle PQR is oriented counter�clockwise� �� if clockwise� and
 if all three points are
collinear� In ��space� a positive orientation means that the points follow a right�handed screw�
if you visit the points in the order PQRS� A negative orientation means a left�handed screw
and zero orientation means that the points are coplanar� Note that the order of the arguments
is signi	cant� The orientation of �P�Q�R� is the negation of the orientation of �P�R�Q�� As
with determinants� the swap of any two elements reverses the sign of the orientation�

You might ask why put the homogeneous coordinate 	rst� The answer a mathematician would
give you is that is really where it should be in the 	rst place� If you put it last� then positive
oriented things are �right�handed� in even dimensions and �left�handed� in odd dimensions�
By putting it 	rst� positively oriented things are always right�handed in orientation� which is
more elegant� Putting the homogeneous coordinate last seems to be a convention that arose in
engineering� and was adopted later by graphics people� If you stick with the engineering way�
then compute the above determinant �with the homogeneous coordinate last� and multiply the
	nal result by �� if the dimension is odd�

��

Lecture Notes CMSC ���

The value of the determinant itself is the area of the parallelogram de	ned by the vectors
Q�P and R�P � and thus this determinant is also handy for computing areas� Later we will
discuss another method�

Application	Line Clipping� To demonstrate some of the ideas that we have been presenting� we
present a coordinate�free algorithm for a clipping a line relative to a convex polygon in the
plane� Clipping is the process of trimming graphics primitives �e�g�� line segments� circles�
	lled polygons� to the boundaries of some window� �See the 	gure below�� It is often applied
in ��space with a rectangular window� However� we shall see later that this procedure is also
often invoked on nonrectangular windows in ��space� as part of a more general process called
perspective clipping�

Because this algorithm is called frequently� it is important to implement it in the most e�cient
manner� This involves introducing coordinates� and taking advantage of knowledge of the
speci	c structure of the problem� For planar clipping� the resulting algorithm is called the
Liang�Barsky algorithm� The advantage of the coordinate�free algorithm�which we will discuss�
is that it is very easy to derive� and it is very general� It applies to virtually any sort of line
segment clipping and in all dimensions� We will use a generalization of this procedure to
intersect rays with polyhedra in ray shooting�

In ��space� de	ne a halfplane to be the portion of the plane lying to one side of a line� In
general� in dimension d� we de	ne a halfspace to the portion of d�space lying to one side of
a �d � ���dimensional hyperplane� In any dimension� a halfspace H can be represented by a
pair hR��ni� where R is a point lying on the plane and �n is a normal vector pointing into the
halfspace� See the 	gure below� Observe that a point P lies within the halfspace if and only
if the vector P �R forms an angle of at most
 degrees with respect to �n� that is if

��P �R� � �n� �
�
If the dot product is zero� then P lies on the plane that bounds the halfspace�

Line segment Clipping

R

n

Halfspace

P

Figure ��� Clipping and Halfspaces�

A convex polygon in the plane is the intersection of a 	nite set of halfplanes� �This de	nition
is not quite accurate� since it allows for unbounded convex polygons� but it is good enough
for our purposes�� In general dimensions� a convex polyhedron is de	ned to be the intersection
of a 	nite set of halfspaces� We will discuss the algorithm for the planar case� but we will see
that there is nothing in our discussion that precludes generalization to higher dimensions�

The input to the algorithm is a set of halfplanes H�� � � � �Hm� where Hi � hRi� �nii and a
set of line segments� L�� � � � � Ln� where each line segment is represented by a pair of points�
Pi��Pi��� The algorithm works by clipping each line segment and outputting the resulting
clipped segment� Thus it su�ces to consider the case of a single segment P�P�� If the segment
lies entirely outside the window� then we return a special status �ag indicating that the clipped
segment is empty�

��

Lecture Notes CMSC ���

Parametric line clipper� We will represent each line segment parametrically� using convex com�
binations� In particular� any point on the line segment P�P� can be represented as

P ��� � ��� ��P� �P�� where
 � � � ��

The algorithm will compute two parameter values� �� and ��� and the resulting clipped line
segment is P ����P ����� We will require that ��
 ��� Initially we set �� �
 and �� � ��
Thus the initial clipped line segment is equal to the original segment� �Be sure you understand
why��

Our approach is to clip the line segment relative to the halfplane of the polygon� one by one�
Let us consider how to clip one parameterized segment about one halfplane hR��ni� As the
algorithm proceeds� �� will increase and �� will decrease� depending on where the clips are
made� If ever �� � �� then the clipped line is empty� and we may return�

We want to know the value of � �if any� at which the line supporting the line segment intersects
the line supporting the halfplane� To compute this� we plug the de	nition of P ��� into the
above condition for lying within the halfplane�

��P ���� R� � �n� �
�

and we solve for �� Through simple a�ne algebra we have

���� ��P� �P�� �R� � �n� �

����P� � P�� � �R� P��� � �n� �

���P� � P�� � �n�� ��R� P��� � �n� �

���P� � P�� � �n� � ��R� P��� � �n�
�d� � dr

where d� � ��P��P�� ��n� and dr � ��R�P��� ��n�� From here there are a few cases depending
on d��

d� �
� Then � � dr�d�� We set
�� � max���� dr�d���

If as a result �� � ��� then we return a �ag indicating that the clipped line segment is
empty�

d�

� Then � � dr�d�� We set
�� � min���� dr�d���

If as a result ��
 ��� then we return a �ag indicating that the clipped line segment is
empty�

d� �
� Then � is unde	ned� Geometrically this means that the bounding line and the line
segment are parallel� In this case it su�ces to check any point on the segment� So� if
�P� � R� � �n

 then we know that the entire line segment is outside of the halfplane�
and so we return a special �ag indicating that the clipped line is empty� Otherwise we
do nothing�

Example� Let us consider an example of this algorithm� In the 	gure given below we have a
convex window bounded by ��sides� � � x � �
 and � � y � � To derive a halfplane
representation for the sides� we create two points with �standard� coordinates R� � ��� �� ��

T

��

Lecture Notes CMSC ���

and R� � ��
� � ��T � Let �ex � ���
�
�T and �ey � �
� ��
�T be the coordinate unit vectors�
Thus we have the four halfplanes

H� � hR�� �exi
H� � hR�� �eyi
H� � hR����exi
H� � hR����exi�

Let us clip the line segment P� � �
� �� �� to P� � ����
� ���

4

2

−ey

(16,0)

9

10

(0,8)

ex
ey

−ex
0

(4,6)

R

P
R0

1

1P

Figure ��� Clipping Algorithm�

Initially �� �
 and �� � �� First� let us consider the left wall� hR�� �exi� Plugging into our
equations we have

d� � ��P� � P�� � �ex�
� ������
� ��� �
� �� ��� � ���
�
�� � ����� ��
� � ���
�
�� � ���

dr � ��R� � P��� � �ex�
� ����� �� ��� �
� �� ���� � ���
�
�� � �������
� � ���
�
�� � ��

Since d� �
� we let
�� � max���� dr�d�� � max�
� ����� � ����

Observe that the resulting point is

P ���� � ��� ���P� ��P� � ������
� �� �� ���������
� �� � ��� �� ���

This is the point of intersection of the left wall with the line segment� The algorithm continues
by clipping with respect to the other bounding halfplanes� We will leave the rest of the example
as an exercise� but as a hint� from constraint H� we get �� � ���� from H� we get �� � ����
and from H� we get �� � ������ The 	nal values are �� � ��� and �� � ����

Lecture ��� ��d Viewing and Orthogonal Projections

�Tuesday� Oct �� �����
Read� Chapter � and ����� in Hill�

��

Lecture Notes CMSC ���

Viewing in OpenGL� For the next couple of lectures we will discuss how viewing and perspective
transformations are handled for ��dimensional scenes� In OpenGL� and most similar graphics
systems� the process involves the following basic steps� of which the perspective transformation
is just one component� We assume that all objects are initially represented relative to a
standard ��dimensional coordinate frame� in what are called world coordinates�

Modelview transformation� Maps objects �actually vertices� from their world�coordinate
representation to one that is centered around the viewer� The resulting coordinates are
called eye coordinates�

Perspective projection� This projects points in ��dimensional eye�coordinates to points on
a plane called the viewplane� �We will see later that this transformation actually produces
a ��dimensional output� where the third component records depth information�� This
projection process consists of three separate parts� the projection transformation �a�ne
part�� clipping� and perspective normalization� Each will be discussed below�

Mapping to the viewport� Convert the point from these idealized ��dimensional coordi�
nates �normalized device coordinates� to the viewport �pixel� coordinates�

We have ignored a number of issues� such as lighting and hidden surface removal� These will
be considered separately later� The process is illustrated in the 	gure below� We have already
discussed the viewport transformation� so it su�ces to discuss the 	rst two transformations�

ey

exez

viewport

viewport transformation

scene

viewer
view plane

Figure ��� OpenGL Viewing Process�

Converting to Viewer�Centered Coordinate System� As we shall see below� the perspective
transformation is simplest when the center of projection� the location of the viewer� is the
origin and the view plane �sometimes called the projection plane or image plane�� onto which
the image is projected� is orthogonal to one of the axes� say the z�axis� Let us call these
eye coordinates� However the user represents points relative to a coordinate system that is
convenient for his�her purposes� Let us call these world coordinates� This suggests that prior to
performing the perspective transformation� we perform a change of coordinate transformation
to map points from world�coordinates to eye coordinates�

In OpenGL� there is a nice utility for doing this� The procedure gluLookAt�� generates the
desired transformation to perform this change of coordinates and multiplies it times the trans�
formation at the top of the current transformation stack� �Recall OpenGL�s transformation
structure from Lecture ��� This should be done in Modelview mode� Because this is the trans�
formation which should be performed last �just prior to perspective projection�� it is the 	rst
transformation that should be applied to the Modelview matrix� �Recall that matrices are
loaded in the reverse order of their application�� Thus� it is almost always preceded by loading
the identity matrix�

�

Lecture Notes CMSC ���

�� assuming� glMatrixMode�GL�MODELVIEW��

glLoadIdentity���

gluLookAt�eyex� eyey� eyez� centerx� centery� centerz� upx� upy� upz��

The arguments are all of type GLdouble� The arguments consist of the coordinates of two
points and vector� in the standard coordinate system� The point eye � �eyex � eyey � eyez � is
the viewpoint� that is the location of they viewer �or the camera�� To indicate the direction
that the camera is pointed� a central point to which the camera is facing is given by center �
�centerx � centery � centerz �� The center is signi	cant only that its de	nes the viewing vector�
which indicates the direction that the viewer is facing� It is de	ned to be center � eye�

These points de	ne the position and direction of the camera� but the camera is still free to ro�
tate about the viewing direction vector� To 	x last degree of freedom� the vector �upx � upy � upz �
provides the direction that is �up� relative to the camera� Under typical circumstances� this
would just be a vector pointing straight up �which might be �
�
� �� in your world coordinate
system�� In some cases �e�g� in a �ight simulator� when the plane banks to one side� you
might want to have this vector pointing in some other direction� This vector need not be
perpendicular to the viewing vector� However� it cannot be parallel to the viewing direction
vector�

The Camera Frame� OpenGL uses the arguments to gluLookAt�� to construct a coordinate
frame centered at the viewer� The x� and y�axes are directed to the right and up� respec�
tively� relative to the viewer� It might seem natural that the z�axes be directed in the direction
that the viewer is facing� but this is not a good idea� To see why� we need to discuss the dis�
tinction between right�handed and left�handed coordinate systems� Consider a orthonormal
coordinate system with basis vectors ex� ey and ez� This system is said to be right handed if
ex � ey � ez� and left handed otherwise �ex � ey � �ez�� Right�handed coordinate systems
are used by default throughout mathematics� �Otherwise computation of orientations is all
screwed up�� Given that the x� and y�axes are directed right and up relative to the viewer�
if the z�axis were to point in the direction that the viewer is facing� this would result in left�
handed coordinate system� The designers of OpenGL wisely decided to stick to a right�handed
coordinate system� which requires that the z�axes is directed opposite to the viewing direction�

Implementing gluLookAt� How does OpenGL implement this change of coordinate transforma�
tion� This turns out to be a nice exercise in geometric computation� so let�s try it� We want
to construct an orthonormal frame whose origin is the point eye� whose �z�basis vector is
parallel to the view vector� and such that the ��up vector projects to the up direction in the 	nal
projection� �This is illustrated in the following 	gure� where the x�axis is pointing outwards
from the page��

C.ez C.ey

up

eye

center

view vector The x−basis vector C.ex is directed
up and out of the page.

Figure ��� The camera frame�

Let C �for camera� denote this frame� Clearly C�O � eye� As mentioned earlier� the view
vector �v is directed from eye to center � The z�basis vector is the normalized negation of this

�

Lecture Notes CMSC ���

vector�

�v � normalize�center � eye�

C��ez � ��v

�Recall that normalization divides a vector by its length� thus resulting in a vector having the
same direction and unit length��

Next� we want to select the x�basis vector for our camera frame� It should be orthogonal to
the viewing direction� it should be orthogonal to the up vector� and it should be directed to
the camera�s right� Recall that the cross product will produce a vector that is orthogonal to
any pair of vectors� and directed according to the right hand rule� Also� we want this vector
to have unit length� Thus we choose

C��ex � normalize��v � ��up��

The result of the cross product must be a nonzero vector� This is why we require that the
view direction and up vector are not parallel to each other� We have two out of three vectors
for our frame� We can extract the last one by taking a cross product of the 	rst two�

C��ey � �C��ez � C��ex��

There is no need to normalize this vector� because it is the cross product of two orthogonal
vectors� each of unit length� Thus it will automatically be of unit length�

Now� all we need to do is to construct the change of coordinates matrix from the standard
frame F to our camera frame C� Recall from our earlier lecture� that the change of coordinate
matrix is formed by considering the matrix M whose columns are the basis elements of C
relative to F � and then inverting this matrix� The matrix before inversion is�

M �

�
C��ex�F �

����� C��ey�F �
����� C��ez�F �

����� C�O�F �
�
�

�
BB�

C�exx C�eyx C�ezx C�Ox

C�exy C�eyy C�ezy C�Oy

C�exz C�eyz C�ezz C�Oz

 �

�
CCA �

We can apply a trick to compute the inverse� M��� e�ciently� Normally� inverting a matrix
would involve invoking a linear algebra procedure �e�g�� based on Gauss elimination�� However�
because M is constructed from an orthonormal frame� there is a much easier way to construct
the inverse�

To see this� consider a �� � matrix A whose columns are orthogonal and of unit length� Such
a matrix is said to be orthogonal� Consider the product ATA of this matrix and its transpose�
Each of the diagonal elements of the product is the dot product of a column of a column of
A with itself� which equals � �since the columns are of unit length�� Each of the o��diagonal
elements is the dot�product of two orthogonal vectors� which equals
� Thus the result is an
identity matrix� implying that AT � A��� The upper�left ��� submatrix ofM is of this type�
but the last column is not� But we can still take advantage of this fact� First� we construct a
�� � matrix R whose upper left �� � submatrix is copied from M �

R �

�
BB�

C�exx C�eyx C�ezx

C�exy C�eyy C�ezy

C�exz C�eyz C�ezz

 �

�
CCA �

��

Lecture Notes CMSC ���

Note that M is equal to the product of two matrices� a translation by the vector eye� denoted
T �eye� and R� Using the fact that R�� � RT � and T �eye��� � T ��eye� we have

M�� � �T �eye� �R��� � R�� � T �eye��� � RT � T ��eye��

Thus� we do not need to invert any matrices to implement gluLookAt��� We simply compute
the basis elements of the camera�frame �using cross products and normalization as described
earlier�� then we compute RT �by copying these elements into the appropriate positions in the
	nal matrix� and compute T ��eye�� and 	nally multiply these two matrices� If you consult the
OpenGL Reference Manual you will see that this is essentially how gluLookAt�� is de	ned�

Parallel and Orthogonal Projection� The second part of the process involves performing the
projection� Projections fall into two basic groups� parallel projections� in which the lines
of projection are parallel to one another� and perspective projection� in which the lines of
projection converge a point�

In spite of their super	cial similarities� parallel and perspective projections behave quite di�er�
ently� Parallel projections are a�ne transformations� and perspective projections are not� �In
particular� perspective projections do not preserve parallelism� as is evidenced by a perspective
view of a pair of straight train tracks� which appear to converge at the horizon�� So let us
start by considering the simpler case of parallel projections and consider perspective later�

There are many di�erent classi	cations of parallel projections� Among these the simplest one
is the orthographic projection� in which the lines of projection are all parallel to one of the
coordinate axes� the z�axis in particular� See the 	gure below�

l

b

−f
−n

r
glOrtho(l,r,b,t,n,f)

t

Orthographic projection

ex

ez

ey ey

ex

ez

ey

ez

ex

P’

P

Figure ��� Orthographic Projection and glOrtho�

The transformation maps a point in ��space to point on the xy�coordinate plane by set�
ting the z�coordinate to zero� Thus a point P � �px� py� pz� ��

T is mapped to the point
P � � �px� py�
� ��� OpenGL does a few things di�erently in order to make its later jobs easier�
First� the user speci	es the window on the xy�plane onto which points are to be projected�
This window will then be stretched to 	t the viewport� This is done by specifying the min�
imum and maximum x�coordinates �left� right� and y�coordinates �bottom� top�� Second� the
transformation does not actually set the z�coordinate to zero� Even though the z�coordinate is
unneeded for the 	nal drawing� it conveys depth information� which is useful for hidden surface
removal� For technical reasons having to do with how hidden surface removal is handled� it
is necessary to indicate the range of distances along the z�axis� The user gives the distance
along the ��z��axis of the near and far clipping planes� �The fact that the z�axis points away
from the viewing direction is rather unnatural for users� By negating the z�coordinate positive
values for near and far are therefore in front of the viewer�� These six values de	ne a rectangle
R in ��space� Points lying outside of this rectangle are clipped away� OpenGL maps R to a

��

Lecture Notes CMSC ���

�� �� � hyperrectangle called the canonical view volume� which extends from �� to � along
each coordinate axis� This is done to simplify the clipping and depth bu�er processing� The
command glOrtho�� is given these six arguments each as type GLdouble� The typical call is�

glMatrixMode�GL�PROJECTION��

glLoadIdentity���

glOrtho�left� right� bottom� top� near� far��

glMatrixMode�GL�MODELVIEW��

The matrix that achieves this transformation is easy to derive� We wish to translate the center
of the rectangle R to the origin� and then scale each axis so that each of the rectangle widths
is scaled to a width of �� �Note the negation of the z scale factor below��

tx � �right left��� ty � �top bottom��� tz � �far near���
sx � ���right � left� sy � ���top � bottom� sz � ����far � near��

The 	nal transformation is the composition of a scaling and translation matrix�

S�sx� sy� sz� � T ��tx��ty��tz� �

�
BB�

sx

 �txsx

 sy
 �tysy

 sz �tzsz

 �

�
CCA �

Lecture ��� Perspective

�Thursday� Oct �� �����
Read� Chapter � in Hill�

Basic Perspective� Perspective transformations are the domain of an interesting area of math�
ematics called projective geometry� The basic problem that we will consider is the one of
projecting points from a � dimensional space onto the ��dimensional plane� called the view
plane� centrally through a point �not on this plane� called the center of projection� The pro�
cess is illustrated in the following 	gure�

P

R

Qcenter
of projection view plane

Figure ��� Perspective Transformations�

One nice things about projective transformations is that they map lines to lines� However� pro�
jective transformations are not a�ne� since �except for the special case of parallel projection�
do not preserve a�ne combinations and do not preserve parallelism� For example� consider
the perspective projection T shown in the 	gure� Let R be the midpoint of segment PQ then
T �R� is not necessarily the midpoint of T �P � and T �Q��

Projective Geometry� In order to gain a deeper understanding of projective transformations� it is
best to start with an introduction to projective geometry� Projective geometry was developed in

��

Lecture Notes CMSC ���

the ��th century by mathematicians interested in the phenomenon of perspective� Intuitively�
the basic idea that gives rise to projective geometry is rather simple� but its consequences are
somewhat surprising�

In Euclidean geometry we know that two distinct lines intersect in exactly one point� unless
the two lines are parallel to one another� This special case seems like an undesirable thing to
carry around� Suppose we make the following simplifying generalization� In addition to the
regular points in the plane �with 	nite coordinates� we will also add a set of ideal points �or
points at in�nity that reside in	nitely far away� Now� we can eliminate the special case and
say that every two distinct lines intersect in a single point� If the lines are parallel� then they
intersect at an ideal point� But there seem to be two such ideal points �one at each end of
the parallel lines�� Since we do not want lines intersecting more than once� we just imagine
that the projective plane wraps around so that two ideal points at the opposite ends of a line
are equal to each other� This is very elegant� since all lines behave much like closed curves
�somewhat like a circle of in	nite radius��

For example� in the 	gure below on the left� the point P is a point at in	nity� Since P is
in	nitely far away it does have a position �in the sense of a�ne space�� but it can be speci	ed
by pointing to it� that is� by a direction� All lines that are parallel to one another along this
direction intersect at P � In the plane� the union of all the points at in	nity forms a line�
called the line at in�nity� �In ��space the corresponding entity is called the plane at in�nity��
Note that every other line intersects the line at in	nity exactly once� The regular a�ne plane
together with the points and line at in	nity de	ne the projective plane� It is easy to generalize
this to arbitrary dimensions as well�

p

p

?

a

a

b

b

Figure ��� Projective Geometry�

Although the points at in	nity seem to be special in some sense� an important tenet of projec�
tive geometry is that they are essentially no di�erent from the regular points� In particular�
when applying projective transformations we will see that regular points may be mapped to
points at in	nity and vice versa�

Orientability and the Projective Space� Projective geometry appears to both generalize and
simplify a�ne geometry� so why we just dispensed with a�ne geometry and use projective
geometry instead� The reason is that along with the good comes some rather strange conse�
quences� For example� the projective plane wraps around itself in a rather strange way� In
particular� it does not form a sphere as you might expect� �Try cutting it out of paper and
gluing the edges together if you need proof��

The nice thing about lines in the Euclidean plane is that each partitions the plane into two
halves� one above and one below� This is not true for the projective plane �since each ideal point
is both above and below�� Furthermore� orientations such as clockwise and counterclockwise

��

Lecture Notes CMSC ���

cannot even be de	ned� The projective plane is a nonorientable manifold �like a Moebius strip
or Klein bottle�� In particular� if you take an object with a counterclockwise orientation� and
then translate it through the line at in	nity and back to its original position� a strange thing
happens� When passing through the line at in	nity� its orientation changes� �Note that this
does not happen on orientable manifolds like the Euclidean plane or the surface of a sphere��

Intuitively� this is because as we pass through in	nity� there is a �twist� in space as is illustrated
in the 	gure above on the right� Notice that the arrow is directed from point a to b� and when
it �reappears� on the other side of the plane� this will still be the case� But� if you look at the
	gure� you will see that the relative positions of a and b are reversed� �

For these reasons� we choose not to use the projective plane as a domain in which to do most
of our geometric computations� Instead� we will brie�y enter this domain� just long enough
to do our projective transformations� and quickly jump back into the more familiar world of
Euclidean space� We will have to take care that when performing these transformations we do
not map any points to in	nity� since we cannot map these points back to Euclidean space�

New Homogeneous Coordinates� How do we represent points in projective space� It turns out
that we can do this by homogeneous coordinates� However� there are some di�erences� First o��
we will not have free vectors in projective space� Consider a regular point P in the plane� with
standard �nonhomogeneous� coordinates �x� y�T � There will not be a unique representation for
this point in projective space� Rather� it will be represented by any coordinate vector of the
form� �

� w � x
w � y
w

�
A � for w
�
�

Thus� if P � ��� ��T are P �s cartesian coordinates� the homogeneous coordinates ��� �� ��T �
��� �� ��T � and ����������T are all legal representations of P in projective plane� Because
of its familiarity� we will use the case w � � most often� Given the homogeneous coordinates
of a regular point P � �x� y� w�T � the projective normalization of P is the coordinate vector
�x�w� y�w� ��T � �This term is confusing� because it is quite di�erent from the process of length
normalization� which maps a vector to one of unit length� In computer graphics this operation
is also referred as perspective division��

How do we represent ideal points� Consider a line passing through the origin with slope of ��
The following is a list of the homogeneous coordinates of some of the points lying on this line��

� �
�
�

�
A �

�
� �
�
�

�
A �

�
� �
�
�

�
A �

�
� �
�
�

�
A � � � � �

�
� x
�x
�

�
A �

Clearly these are equivalent to the following�
� �
�
�

�
A �

�
� �

�
���

�
A �

�
� �

�
���

�
A �

�
� �

�
���

�
A � � � � �

�
� �

�
��x

�
A �

We can see that as x tends to in	nity� the limiting point has the homogeneous coordinates
��� ��
�T � So� when w �
� the point �x� y� w�T is the point at in	nity� that is pointed to by
the vector �x� y�T �and ��x��y�T as well by wraparound��

�One way of dealing with this phenomenon� is to de�ne the projective plane di�erently� as a two�sided projective

plane� The object starts on the front�side of the plane� When it passes through the line at in�nity� it reappears on the
back�side of the plane� When it passes again through the line at in�nity it reappears on the front�side� Orientations
are inverted as you travel from the front to back� and then are corrected from going from back to front�

��

Lecture Notes CMSC ���

Perspective Projection Transformations� We will not give a formal de	nition of projective
transformations� �But it is not hard to do so� Just as a�ne transformations preserve a�ne
combinations� projective transformations map lines to lines and preserve something called a
cross ratio�� It is generally possible to de	ne a perspective projection using a � � � matrix
as we did with a�ne transformations� However� we will need treat projective transformations
somewhat di�erently� Henceforth� we will assume that we will only be transforming points�
not vectors� �Typically we will be transforming the endpoints of line segments and vertices of
polygonal patches�� Let us assume for now that the points to be transformed are all strictly
in front of the eye� We will see that objects behind the eye must eventually be clipped away�
but we will consider this later�

Let us consider the following viewing situation� Since it is hard to draw good perspective
drawings in ��space� we will consider just the y and z axes for now �and everything we do with
y we will do symmetrically with x later�� We assume that the center of projection is located
at the origin of some frame we have constructed�

Imagine that the viewer is facing the �z direction� �Recall that this follows OpenGL�s con�
vention so that the coordinate frame is right�handed�� The x�axis points to the viewer�s right
and the y�axis points upwards relative to the viewer� Suppose that we are projecting points
onto a projection plane that is orthogonal to the z�axis and is located at distance d from the
origin along the �z axis� �Note that d is given as a positive number� not a negative� This is
consistent with OpenGL�s conventions�� See the following 	gure�

z/d
y

d

P=(y,z)

yy

z

−z
x

y

z

P’=(− ,−d)

Figure �� Perspective transformation�

Consider a point P � �y� z�T in the plane� �Note that z is negative but d is positive�� Where
should this point be projected to on the view plane� Let P � � �y�� z��T denote the coordinates
of this projection� By similar triangles it is easy to see that the following ratios are equal�

y

�z �
y�

d
�

implying that y� � �y��z�d�� We also have z � �d� Generalizing this to ��space� the point
with coordinates �x� y� z� ��T is transformed to the point with homogeneous coordinates�

BB�
�x��z�d�
�y��z�d�

�d
�

�
CCA �

Unfortunately� there is no � � � matrix that can realize this result� �Note that z is NOT a
constant and so cannot be stored in the matrix��

However� there is a � � � matrix that will generate the equivalent homogeneous coordinates�

��

Lecture Notes CMSC ���

In particular� if we multiply the above vector by ��z�d� we get��
BB�

x
y
z

�z�d

�
CCA �

This is a linear function of x� y� and z� and so we can write the perspective transformation in
terms of the following matrix�

M �

�
BB�
�

 �

 �

 ���d

�
CCA �

After we have the coordinates of a �a�ne� transformed point P � � M � P � we then apply
projective normalization �perspective division� to determine the corresponding point in Eu�
clidean space� Notice that if z �
� then we will be dividing by zero� But also notice that the
perspective projection maps points on the xy�plane to in	nity�

Lecture ��� Perspective in OpenGL

�Tuesday� Oct ��� �����
Read� Chapter � in Hill�

OpenGL�s Perspective Projection� OpenGL provides a couple of ways to specify the perspec�
tive projection� The most general method is through glFrustum��� We will discuss a simpler
method called gluPerspective��� which su�ces for almost all cases that arise in practice� In
particular� this simpler procedure assumes that the viewing window is centered about the view
direction vector �the negative z�axis�� whereas glFrustum�� does not�

Consider the following viewing model� In front of his eye� the user holds rectangular window�
centered on the view direction� onto which the image is to be projected� The viewer sees any
object that lies within a rectangular cone� whose axis is the �z�axis� and whose apex is his
eye� In order to indicate the height of this cone� the user speci	es its angular height� called
the y �eld�of�view and denoted fovy� It is given in degrees�

θ

aspect = w/h

y

x

z

near

far

h

w

Figure �
� OpenGL�s perspective speci	cation�

To specify the angular width of the cone� we could specify the x 	eld�of�view� but the designers
of OpenGL decided on a di�erent approach� Recall that the aspect ratio is de	ned to be the
width�height ratio of the window� The user presumably knows the aspect ratio of his viewport�

��

Lecture Notes CMSC ���

and typically users want an undistorted view of the world� so the ratio of the x and y 	elds�of�
view should match the viewport�s aspect ratio� Rather than forcing the user to compute the
number of degrees of angular width� the user just provides the aspect ratio of the viewport�
and the system then derives the x 	eld�of�view from this value�

Finally� for technical reasons related to depth bu�ering� we need to specify a distance along
the �z�axis to the near clipping plane and to the far clipping plane� Objects in front of the
near plane and behind the far plane will be clipped away� We have a limited number of bits of
depth�precision� and supporting a greater range of depth values will limit the accuracy with
which we can represent depths� The resulting shape is called the viewing frustum� These
arguments form the basic elements of the main OpenGL command for perspective�

gluPerspective�fovy� aspect� near� far��

All arguments are positive and of type GLdouble� This command creates a matrix which
performs the necessary depth perspective transformation� and multiplies it with the matrix on
top of the current stack� This transformation should be applied to the projection matrix stack�
So this typically occurs in the following context of calls� usually as part of your initializations�

glMatrixMode�GL�PROJECTION�� �� projection matrix mode

glLoadIdentity��� �� initialize to identity

gluPerspective������

glMatrixMode�GL�MODELVIEW�� �� restore default matrix mode

Perspective with Depth� The question that we want to consider next is what perspective trans�
formation matrix does OpenGL generate for this call� There is a signi	cant shortcoming with
the simple perspective transformation that we described last time� Recall from last time that
the point �x� y� z� ��T is mapped to the point ��x��z�d���y��z�d���d� ��T � The last two com�
ponents of this vector convey no information� for they are the same� no matter what point is
projected�

Is there anything more that we could ask for� In turns out that there is� This is depth
information� We would like to know how far a projected point is from the viewer� After the
projection� all depth information is lost� because all points are �attened onto the projection
plane� Such depth information would be very helpful in performing hidden�surface removal�
Let�s consider how we might include this information�

We will design a projective transformation in which the �x� y��coordinates of the transformed
points are the desired coordinates of the projected point� but the z�coordinate of the trans�
formed point encodes the depth information� This is called perspective with depth� The �x� y�
coordinates are then used for drawing the projected object and the z�coordinate is used in
hidden surface removal� It turns out that this depth information will be subject to a nonlinear
distortion� However� the important thing will be that depth�order will be preserved� in the
sense that points that are further from the eye �in terms of their z�coordinates� will have
greater depth values than points that are nearer�

As a start� let�s consider the process in a simple form� As usual we assume that the eye is
at the origin and looking down the �z�axis� Let us also assume that the projection plane is
located at z � ��� Consider the following matrix�

M �

�
BB�
�

 �

 � �

 ��

�
CCA �

��

Lecture Notes CMSC ���

If we apply it to a point P with homogeneous coordinates �x� y� z� ��T � then the resulting point
has coordinates

M � P �

�
BB�

x
y

�z �
�z

�
CCA �

�
BB�

�x�z
�y�z

��� ��z
�

�
CCA

Note that the x and y coordinates have been properly scaled for perspective �recalling that
z

 since we are looking down the �z�axis�� The depth value is

z� � ��� �

z
�

Depending on the values we choose for � and �� this is a �nonlinear� monotonic function of
z� In particular� depth increases as the z�values decrease �since we view down the negative
z�axis�� so if we set �

� then the depth value z� will be a monotonically increasing function
of depth� In fact� by choosing � and � properly� we adjust the depth values to lie within
whatever range of values suits us� We�ll see below how these values should be chosen�

Canonical View Volume� In applying the perspective transformation� all points in projective
space will be transformed� This includes point that are not within the viewing frustum �e�g��
points lying behind the viewer�� One of the important tasks to be performed by the system�
prior to perspective division �when all the bad stu� might happen� is to clip away portions of
the scene that do not lie within the viewing frustum�

OpenGL has a very elegant way of simplifying this clipping� It adjusts the perspective trans�
formation so that the viewing frustum �no matter how it is speci	ed by the user� is mapped to
the same canonical shape� Thus the clipping process is always being applied to the same shape�
and this allows the clipping algorithms to be designed in the most simple and e�cient manner�
This idealized shape is called the canonical view volume� Clipping is actually performed in
homogeneous coordinate �i�e�� ��dimensional� space just prior to perspective division� How�
ever� we will describe the canonical view volume in terms of how it appears after perspective
division� �We will leave it as an exercise to 	gure out what it looks like prior to perspective
division��

The canonical view volume �after perspective division� is just a ��dimensional rectangle� It is
de	ned by the following constraints�

�� � x � �� �� � y � �� �� � z � ��
The �x� y� coordinates indicate the location of the projected point on the 	nal viewing window�
The z�coordinate is used for depth� There is a reversal of the z�coordinates� in the sense that
before the transformation� points further from the viewer have smaller z�coordinates �larger
in absolute value� but smaller because they are on the negative z side of the origin�� Now� the
points with z � �� are the closest to the viewer �lying on the near clipping plane� and the
points with z � � are the furthest from the viewer �lying on the far clipping plane�� Points
that lie on the top �resp� bottom� of the canonical volume correspond to points that lie on the
top �resp� bottom� of the viewing frustum�

Returning to the earlier discussion about � and �� we see that we want to map points on the
near clipping plane z � �n to z� � �� and points on the far clipping plane z � �f to z� � ��
This gives the simultaneous equations�

�� � ��� �

�n
 � � ��� �

�f �

�

Lecture Notes CMSC ���

z

y

y

z

Canonical view volume

+1 −1

+1

viewer

Viewing frustum

z=−near

z=−far

−1

(far) (near)

(bottom)

(top)

Figure ��� Perspective with depth�

Solving for � and � gives

� �
f n

n� f
� �

�fn

n� f
�

Perspective Matrix� To see how OpenGL handles this� recall the function gluPerspective���
Let c � cot�	���� We will take a side view as usual �thus ignoring the x�coordinate�� Let a
denote the aspect ratio� let n denote the distance to the near clipping plane and let f denote
the distance to the far clipping plane� �All quantities are positive�� Here is the matrix it
constructs to perform the perspective transformation�

M �

�
BBB�

c�a

 c

f n

n� f

�fn

n� f

 ��

�
CCCA �

Observe that a point P in ��space with homogeneous coordinates �x� y� z� ��T is mapped to

M � P �

�
BB�

cx�a
cy

��f n�z �fn���n � f�
�z

�
CCA �

�
BB�

�cx��az�
�cy�z

���f n�� ��fn�z����n � f�
�

�
CCA �

How did we come up with such a strange mapping� Notice that other than the scaling factors�
this is very similar to the perspective�with�depth matrix given earlier �given our values � and �
plugged in�� The diagonal entries c�a and c are present to scale the arbitrarily shaped window
into the square �as we�ll see later��

To see that this works� we will show that the corners of the viewing frustum are mapped to the
corners of the canonical viewing volume �and we�ll trust that everything in between behaves
nicely�� In the 	gure we show a side view� thus ignoring the x�coordinate� Because the window
has the aspect ratio a � w�h� it follows that for points on the upper�right edge of the viewing
frustum �relative to the viewer�s perspective� we have x�y � a� and thus x � ay�

Consider a point that lies on the top side of the view frustum� We have �z�y � cot 	�� � c�
implying that y � �z�c� If we take the point to lie on the near clipping plane� then we have
z � �n� and hence y � n�c� Further� if we assume that it lies on the upper right corner of
the frustum �relative to the viewer�s position� then x � ay � an�c� Thus the homogeneous

�

Lecture Notes CMSC ���

coordinates of the upper corner on the near clipping plane �shown as a white dot in the 	gure�
are �an�c� n�c��n� ��T � If we apply the above transformation� this is mapped to

M

�
BB�

an�c
n�c
�n
�

�
CCA �

�
BBBB�

n
n

�n�f n�

n� f

�fn

n� f
n

�
CCCCA �

�
BBBB�

�
�

��f n�

n� f

�f

n� f
�

�
CCCCA �

�
BB�

�
�

��
�

�
CCA �

Notice that this is the upper corner of the canonical view volume on the near �z � ��� side�
as desired�

Similarly� consider a point that lies on the bottom side of the view frustum� We have
�z���y� � cot 	�� � c� implying that y � z�c� If we take the point to lie on the far clipping
plane� then we have z � �f � and so y � �f�c� Further� if we assume that it lies on the
lower left corner of the frustum �relative to the viewer�s position� then x � �af�c� Thus the
homogeneous coordinates of the lower corner on the far clipping plane �shown as a black dot
in the 	gure� are ��af�c��f�c��f� ��T � If we apply the above transformation� this is mapped
to

M

�
BB�

�af�c
�f�c
�f
�

�
CCA �

�
BBBB�

�f
�f

�f�f n�

n� f

�fn

n� f
f

�
CCCCA �

�
BBBB�

��
��

��f n�

n� f

�n

n� f
�

�
CCCCA �

�
BB�

��
��
�
�

�
CCA �

This is the lower corner of the canonical view volume on the far �z � �� side� as desired�

Lecture ��� Lighting and Shading

�Thursday� Oct ��� �����
Read� Chapter � in Hill�

Lighting and Shading� We will now take a look at the next major element of graphics rendering�
light and shading� This is one of the primary elements of generating realistic images� This
topic is the beginning of an important shift in approach� Up until now� we have discussed
graphics from are purely mathematical �geometric� perspective� Light and re�ection brings
us to issues involved with the physics of light and color and the physiological aspects of how
humans perceive light and color�

An accurate simulation of light energy and how it emanates� re�ects o� and passes through
objects is an amazingly complex� and computationally intractable task� Although the human
visual system is quite sensitive to certain errors in accurate rendering� we can be quite tolerant
with other sorts of errors� Much of computer graphics involves tricking the eye by producing
reasonable approximations� which are good enough to fool the eye �or at least well enough to
allow ourselves to suspend belief that what we are seeing is not real��

OpenGL� like most interactive graphics systems� supports a very simple lighting and shading
model� and hence can achieve only limited realism� This was done primarily because speed is of
the essence in interactive graphics� OpenGL uses something called a local illumination model�
which means that the light of a point depends only on its relationship to light sources� without
considering the other objects in the scene� For example� OpenGL�s lighting model does not
model shadows� it does not handle indirect re�ection from other objects �where light bounces
o� of one object and illuminates another�� it does not handle objects that re�ect or refract

��

Lecture Notes CMSC ���

light �like metal spheres and glass balls�� However the designers of OpenGL have included a
number of tricks for essentially �faking� many of these e�ects�

OpenGL�s light and shading model was designed to be very e�cient and very general �in order
to permit the faking alluded to earlier�� It contains a number features that seem to bear little
or no resemblance to the laws of physics� The lighting model that we will is slightly di�erent
from OpenGL�s model� but is a bit more meaningful from the perspective of physics�

Light Sources� Before talking about light re�ection� we need to discuss where the light originates�
In reality� light sources come in many sizes and shapes� They may emit light in varying
intensities and wavelengths according to direction� To simplify things� OpenGL assumes that
all light sources are points� and that the energy they emit can be modeled as an RGB triple�

Light sources do not necessarily emit white light� They emit light according to a luminance
function� which can be broken into three components �Lr � Lg� Lb� for the intensities of red�
green� and blue light respectively� We will not concern ourselves with the exact units of mea�
surement� Typical units might be watts or lumens� depending on whether you are considering
radiometry �the physics of light� or photometry �the study of the perception of light��

Lighting in real environments usually involves a considerable amount of indirect re�ection
between objects of the scene� If we were to ignore this e�ect� and simply consider a point to
be illuminated only if it can see the light source� then the resulting image in which objects in
the shadows are totally black� In indoor scenes we are used to seeing much softer shading� so
that even objects that are hidden from the light source are partially illuminated� In OpenGL
�and most local illumination models� this is modeled by breaking the light source�s intensity
into two components� ambient emission and point emission�

Ambient emission does not come from any one location� Like a heated room� it is scattered
uniformly in all locations and directions� A point is illuminated by ambient emission even if
it is not visible from the light source� On the other hand� point emission originates from the
point of the light source� In theory� point emission only a�ects points that are directly visible
to the light source� That is� a point P is illuminate by light source Q if and only if the open
line segment PQ does not intersect any of the objects of the scene�

Unfortunately� determining whether a point is visible to a light source in a complex scene
with thousands of objects can be computationally quite expensive� So OpenGL simply tests
whether the surface is facing towards the light or away from the light� Surfaces in OpenGL
all all polygons� but let us consider this in a more general setting� Suppose that have a point
P lying on some surface� Let �n denote the normal vector at P � directed outwards from the
object� and let �� denote the directional vector from P to the light source ��� � Q�P �� then P

will be illuminated if and only if the angle between these vectors is acute� that is� if �n � �� �
�
For example� in the following 	gure� the point P is illuminated� In spite of the obscuring
triangle� point P � is also illuminated� because other objects in the scene are ignored by the
local illuminationmodel� The point P �� is clearly not illuminated� because its normal is directed
away from the light�

We may describe the light�s intensity in terms of its ambient and point emission strengths�

La �

�
� Lar

Lag
Lab

�
A Lp �

�
� Lpr

Lpg
Lpb

�
A �

Attenuation� Light is subject to attenuation� that is� the decrease in strength of illumination as
the distance to the source increases� Physics tells us that the intensity of light falls o� as the

��

Lecture Notes CMSC ���

n

illuminated

P

n

not illuminatedP’

n
P"

Q

l l

l

Figure ��� Point light source visibility�

inverse square of the distance� This would imply that the intensity at some �unblocked� point
P would be

I�P�Q� �
�

jP � Qj� I�Q��

where jP �Qj denotes the Euclidean distance from P to Q� However� in OpenGL� our various
simplifying assumptions �ignoring indirect re�ections� for example� will cause point sources
to appear unnaturally dim using the exact physical model of attenuation� Consequently� it is
common to use an attenuation function that has constant� linear� and quadratic components�
The user speci	es constants a� b and c� Let d � jP � Qj denote the distance to the point
source� Then the attenuation function is

I�P�Q� �
�

a bd cd�
I�Q��

In OpenGL� the default values are a � � and b � c �
� so there is no attenuation by default�

Directional Sources� A light source can be placed in	nitely far away by using the projective
geometry convention of setting the last coordinate to
� Suppose that we imagine that the
z�axis points up� At high noon� the sun�s coordinates would be modeled by the homogeneous
positional vector

�
�
� ��
�T �

These are called directional sources� There is a performance advantage to using directional
sources� Many of the computations involving light sources require computing angles between
the surface normal and the light source location� If the light source is at in	nity� then all points
on a single polygonal patch have the same angle� and hence the angle need be computed only
once for all points on the patch�

Sometimes it is nice to have a directional component to the light sources� OpenGL also
supports something called a spotlight� where the intensity is strongest along a given direction�
and then drops o� according to the angle from this direction� See the OpenGL function
glLight�� for further information�

Lights in OpenGL� To use lighting in OpenGL� 	rst you must enable lighting� through a call
to glEnable��� OpenGL allows the user to create up to � light sources� named GL LIGHT�

through GL LIGHT�� Each light source may either be enabled �turned on� or disabled �turned
o��� By default they are all disabled� Again this is done using glEnable�� �and glDisable����
The properties of each light source is set by the command glLight���� This command takes
three arguments� the name of the light� the property of the light to set� and the value of this
property� We will discuss only a simple example for now� Let us enable lighting� and then
enable light
� whose position is ��� �� �� ��T in homogeneous coordinates� and which has a gray

��

Lecture Notes CMSC ���

ambient intensity and red di�use intensity� These intensities are expressed as RGBA values�
�We will discuss di�use intensity below�� The procedure glLight��� can be used for setting
other things like attenuation�

Setting up a simple lighting situation

GLfloat ambientIntensity�� � ����� ���� ���� �����

GLfloat diffuseIntensity�� � ����� ���� ���� �����

GLfloat position�� � ����� ���� ���� �����

glEnable�GL�LIGHTING�� �� enable lighting

glEnable�GL�LIGHT��� �� enable light �

�� set up light � properties

glLightfv�GL�LIGHT�� GL�AMBIENT� ambientIntensity��

glLightfv�GL�LIGHT�� GL�DIFFUSE� diffuseIntensity��

glLightfv�GL�LIGHT�� GL�POSITION� position��

There are a number of other commands used for de	ning how light and shading are done in
OpenGL� We will discuss these in greater detail later� They include glLightModel�� and
glShadeModel���

Types of light re�ection� The next issue needed to determine how objects appear is how this
light is re�ected o� of the objects in the scene and reach the viewer� So the discussion shifts
from the discussion of light sources to the discussion of object surface properties� We will
assume that all objects are opaque� The simple model that we will use for describing the
re�ectance properties of objects is called the Phong model� The model is some �
 years old�
and is based on modeling surface re�ection as a combination of the following components�

Emission� This is used to model objects that glow �even when all the lights are o��� This is
una�ected by the presence of any light sources� However� because our illumination model
is local� it does not behave like a light source� in the sense that it does not cause any
other objects to be illuminated�

Ambient re�ection� This is a simple way to model indirect re�ection� All surfaces in all
positions and orientations are illuminated equally by this light energy�

Di
use re�ection� The illumination produced by matte �i�e� dull or not shiny� smooth ob�
jects� such as foam rubber�

Specular re�ection� The bright spots appearing on smooth shiny �e�g� metallic or polished�
surfaces� Although specular re�ection is related to pure re�ection �as with mirrors�� for
the purposes of our simple model these two are di�erent� In particular� specular re�ection
only re�ects light� not the surrounding objects in the scene�

Let L � �Lr � Lg� Lb� denote the illumination intensity of the light source� OpenGL allows us to
break this light�s emitted intensity into three components� ambient La� di�use Ld� and specular
Ls� Each type of light component consists of the three color components� so� for example�
Ld � �Ldr � Ldg� Ldb�� denotes the RGB vector �or more generally the RGBA components� of
the di�use component of light� As we have seen� modeling the ambient component separately
is merely a convenience for modeling indirect re�ection� It is not as clear why someone would
want to turn on or turn o� a light source�s ability to generate di�use and specular re�ection�
�There is no physical justi	cation to this that I know of� It is an object�s surface properties�
not the light�s properties� which determine whether light re�ects di�usely or specularly� But�
again this is all just a model�� The di�use and specular intensities of a light source are usually
set equal to each other�

��

Lecture Notes CMSC ���

An object�s color determines how much of a given intensity is re�ected� Let C � �Cr � Cg� Cb�
denote the object�s color� These are assumed to be normalized to the interval �
� ��� Thus we
can think of Cr as the fraction of red light that is re�ected from an object� Thus� if Cr �
�
then no red light is re�ected� When light of intensity L hits an object of color C� the amount
of re�ected light is given by the product

LC � �LrCr� LgCg� LbCb��

Beware� This is a component�by�component multiplication� and not a vector multiplication
or dot�product in the usual sense� For example� if the light is white L � ��� �� �� and the color
is red C � ���
�
� then the re�ection is LC � ���
�
� which is red� However if the light is
blue L � �
�
� ��� then there is no re�ection� LC � �
�
�
�� and hence the object appears to
be black�

In OpenGL rather than specifying a single color for an object �which indicates how much light
is re�ected for each component� you instead specify the amount of re�ection for each type of
illumination� Ca� Cd� and Cs� Each of these is an RGBA vector� This seems to be a rather
extreme bit of generality� because� for example� it allows you to specify that an object can
re�ect only red light ambient light and only blue di�use light� Again� I know of no physical
explanation for this phenomenon� Note that it is common that the specular color �since it
arises by way of re�ection of the light source� is usually made the same color as the light
source� not the object� In our presentation� we will assume that Ca � Cd � C� the color of
the object� and that Cs � L� the color of the light source�

So far we have laid down the foundation for the Phong Model� Next time we will discuss
exactly how the Phong model assigns colors to the points of a scene�

Lecture ��� The Phong Reection Model

�Tuesday� Oct �	� �����
Read� Chapter � in Hill�

The Phong Re�ection Model� Last time we introduced the Phong re�ection model� Recall that
this is a local illumination model in which the light coming o� of an object is grouped into one
of the following categories�

Emission� Light emanating from the object� irrespective of any light sources�

Ambient re�ection� Light which re�ect uniformly from all objects in all directions�

Di
use re�ection� Models matte �unshiny� re�ection�

Specular re�ection� Models shiny surface re�ection�

The Relevant Vectors� The shading of a point on a surface is a function of the relationship
between the viewer� light sources� and surface� �Recall that because this is a local illumination
model the other objects of the scene are ignored�� The following vectors are relevant to shading�
We can think of them as being centered on the point whose shading we wish to compute� For
the purposes of our equations below� it will be convenient to think of them all as being of unit
length� They are illustrated in the 	gure below�

Normal vector� A vector �n that is perpendicular to the surface and directed outwards from
the surface� There are a number of ways to compute normal vectors� depending on the
representation of the underlying object� For our purposes� the following simple method is

��

Lecture Notes CMSC ���

l r
u u

n

l

v

r

h

n’

n

Figure ��� Vectors used in Phong Shading�

su�cient� Given any three noncollinear points� P�� P�� P�� on a polygon� we can compute
a normal to the surface of the polygon as a cross product of two of the associated vectors�

�n � normalize��P� � P�� � �P� � P����

The vector will be directed outwards if the triple P�P�P� has a counterclockwise orienta�
tion when seen from outside�

View vector� A vector �v that points in the direction of the viewer �or camera��

Light vector� A vector �� that points towards the light source�

Re�ection vector� A vector �r that indicates the direction of pure re�ection of the light
vector� �Based on the law that that the angle of incidence with respect to the surface
normal equals the angle of re�ection�� The re�ection vector computation reduces to an
easy exercise in vector arithmetic� First observe that �because all vectors have been

normalized to unit length� the orthogonal projection of �� onto �n is

�n� � ��n � ����n�

The vector directed from the tip of �� to the tip of �n� is �u � �n� � ��� To get �r observe that
we need add two copies of �u to ��� Thus we have

�r � �� ��u � �� ���n� � ��� � ���n � ����n� ���

Halfway vector� A vector �h that is midway between �� and �v� Since this is half way between
�� and �v� and both have been normalized to unit length� we can compute this by simply
averaging these two vectors and normalizing �assuming that they are not pointing in
exactly opposite directions�� Since we are normalizing� the division by � for averaging is
not needed�

�h � normalize���� �v���� � normalize��� �v��

Phong Lighting Equations� There almost no objects that are pure di�use re�ectors or pure spec�
ular re�ectors� The Phong re�ection model is based on the simple modeling assumption that
we can model any �nontextured� object�s surface to a reasonable extent as some mixture of
purely di�use and purely specular components of re�ection along with emission and ambient
re�ection� Let us ignore emission for now� since it is the rarest of the group� and will be easy
to add in at the end of the process�

The surface material properties of each object will be speci	ed by a number of parameters�
indicating the intrinsic color of the object and its ambient� di�use� and specular re�ectance�
Let C denote the RGB factors of the object�s base color� As mentioned in the previous lecture�
we assume that the light�s energy is given by two RGB vectors La� its ambient component

��

Lecture Notes CMSC ���

and Lp its point component �assuming origin at point Q�� For consistency with OpenGL� we
will assume that we di�erentiate Lp into two subcomponents Ld and Ls� for the di�use and
specular energy of the light source �which are typically equal to each other�� Typically all
three will have the same proportion of red to green to blue� since they all derive from the same
source�

Ambient light� Ambient light is the simplest to deal with� Let Ia denote the intensity of re�ected
ambient light� For each surface� let

 � �a � �
denote the surface�s coe�cient of ambient re�ection� that is� the fraction of the ambient light
that is re�ected from the surface� The ambient component of illumination is

Ia � �aLaC

Note that this is a vector equation �whose components are RGB��

Di
use re�ection� Di�use re�ection arises from the assumption that light from any direction is
re�ected uniformly in all directions� Such an re�ector is called a pure Lambertian re�ector�
The physical explanation for this type of re�ection is that at a microscopic level the object is
made up ofmicrofacets that are highly irregular� and these irregularities scatter light uniformly
in all directions�

The reason that Lambertian re�ectors appear brighter in some parts that others is that if the
surface is facing �i�e� perpendicular to� the light source� then the energy is spread over the
smallest possible area� and thus this part of the surface appears brightest� As the angle of the
surface normal increases with respect to the angle of the light source� then an equal among of
the light�s energy is spread out over a greater fraction of the surface� and hence each point of
the surface receives �and hence re�ects� a smaller amount of light�

It is easy to see from the 	gure below� that as the angle 	 between the surface normal �n and
the vector to the light source �� increases �up to a maximum of
 degrees� then amount of light
intensity hitting a small di�erential area of the surface dA is proportional to the area of the
perpendicular cross�section of the light beam� dA cos 	� The is called Lambert�s Cosine Law�

n

l

dA dA cos θ

l
n

dA

θ

Figure ��� Lambert�s Cosine Law�

The key parameter of surface 	nish that controls di�use re�ection is �d� the surface�s coe�cient
of di�use re�ection� Let Id denote the di�use component of the light source� If we assume
that �� and �n are both normalized� then we have cos 	 � ��n � ���� If ��n � ���

� then the point is
on the dark side of the object� The di�use component of re�ection is�

Id � �dmax�
� �n � ���LdC�

This is subject to attenuation depending on the distance of the object from the light source�

Specular Re�ection� Most objects are not perfect Lambertian re�ectors� One of the most common
deviations is for smooth metallic or highly polished objects� They tend to have specular
highlights �or �shiny spots��� Theoretically� these spots arise because at the microfacet level�

��

Lecture Notes CMSC ���

light is not being scattered perfectly randomly� but shows a preference for being re�ected
according to familiar rule that the angle of incidence equals the angle of re�ection� On the
other hand� the microfacet level� the facets are not so smooth that we get a clear mirror�like
re�ection�

There are two common ways of modeling of specular re�ection� The Phong model uses the
re�ection vector �derived earlier�� OpenGL instead uses a vector called the halfway vector�
because it is somewhat more e�cient and produces essentially the same results� Observe that
if the eye is aligned perfectly with the ideal re�ection angle� then �h will align itself perfectly
with the normal �n� and hence ��n ��h� will be large� On the other hand� if eye deviates from the
ideal re�ection angle� then �h will not align with �n� and ��n ��h� will tend to decrease� Thus� we
let ��n ��h� be the geometric parameter which will de	ne the strength of the specular component�
�The original Phong model uses the factor ��r � �v� instead��
The parameters of surface 	nish that control specular re�ection are �s� the surface�s coe�cient
of specular re�ection� and shininess� denoted �� As � increases� the specular re�ection drops
o� more quickly� and hence the size of the resulting shiny spot on the surface appears smaller
as well� Shininess values range from � for low specular re�ection up to� say� �

� for highly
specular re�ection� The formula for the specular component is

Is � �smax�
� �n ��h��Ls�

As with di�use� this is subject to attenuation�

Specular reflectorDiffuse reflector

Figure ��� Shininess�

Putting it all together� Combining this with Ie �the light emitted from an object�� the total
re�ected light from a point on an object of color C� being illuminated by a light source L�
where the point is distance d from the light source using this model is�

I � Ie Ia
�

a bd cd�
�Id Is�

� Ie �aLaC
�

a bd cd�
��dmax�
� �n � ���LdC �smax�
� �n ��h��Ls��

As before� note that this a vector equation� computed separately for the R� G� and B com�
ponents of the light�s color and the object�s color� For multiple light sources� we add up the
ambient� di�use� and specular components for each light source�

Surface Normals� We mentioned one way for computing normals above based on taking the cross
product of two vectors on the surface of the object� Here are some other ways�

Normals by Area� The method of computing normals by considering just three points is
subject to errors if the points are nearly collinear or not quite coplanar �due to round�o�
errors�� A better method is to consider all the points on the polygon� Suppose we are

��

Lecture Notes CMSC ���

given a planar polygonal patch� de	ned by a sequence of n points P�� P�� � � � � Pn��� We
assume that these points de	ne the vertices of a polygonal patch�

Here is a nice method for determining the plane equation�

ax by cz d �
�

Once we have determined the plane equation� the normal vector has the coordinates
�a� b� c��

The method makes use of the fact that the coe�cients a� b� and c are proportional to the
signed areas of the polygon�s orthogonal projection onto the yz�� xz�� and xy�coordinate
planes� respectively� By a signed area� we mean that if the projected polygon is oriented
clockwise the signed area is positive and otherwise it is negative� How to compute the
projected area of a polygon� Let us consider the xy�projection for concreteness� The
idea is to break the polygon�s area into the sum of signed trapezoid areas� See the 	gure
below�

Area = (y2+y3)(x2−x3)
2
1

(x2,y2)
(x3,y3)

x

y

Figure ��� Area of polygon�

Assume that the points are oriented counterclockwise around the boundary� For each
edge� consider the trapezoid bounded by that edge and its projection onto the x�axis�
The area of the trapezoid will be positive if the edge is directed to the left and negative
if it is directed to the right�

The cute observation is that even though the trapezoids extend outside the polygon� its
area will be counted correctly� Every point inside the polygon is under one more left edge
than right edge and so will be counted once� and each point under the polygon is under
the same number of left and right edges� and these areas will cancel�

Summing the areas of the trapezoids yields�

a �
�

�

nX
i��

�zi zi����yi � yi���

b �
�

�

nX
i��

�xi xi����zi � zi���

c �
�

�

nX
i��

�yi yi����xi � xi���

Finally� we normalize the vector �a� b� c� to unit length to get the normal vector �n�

Normals for Implicitly Surfaces� Given a surface de	ned by an implicit representation�
e�g� the set of points that satisfy some equation� f�x� y� z� �
� then the normal at some

�

Lecture Notes CMSC ���

point is given by gradient vector� This is a vector whose components are the partial
derivatives of the function at this point

�n �

�
� f�x

f�y
f�z

�
A �

As usual this should be normalized to unit length� �Recall that f�x is computed by
taking the derivative of f with respect to x and treating y and z as though they are
constants�� See the text for an example�

Normals for Parametric Surfaces� Surfaces in computer graphics are more often repre�
sented parametrically� A parametric representation is one in which the points on the
surface are de	ned by three function of � variables or parameters� say u and v�

x � �x�u� v��

y � �y�u� v��

z � �z�u� v��

We will discuss this representation more later in the semester� but for now let us just
consider how to compute a normal vector for some point ��x�u� v�� �y�u� v�� �z�u� v�� on
the surface�

To compute a normal vector� 	rst compute the gradients with respect to u and v�

�

u
�

�
� �x�u

�y�u
�z�u

�
A �

v
�

�
� �x�v

�y�v
�z�v

�
A �

and then return their cross product

�n �
�

u
� �

v
�

Lighting and Shading in OpenGL� To describe lighting in OpenGL there are three major steps
that need to be performed� setting the lighting and shade model �smooth or �at�� de	ning the
lights� their positions and properties� and 	nally de	ning object material properties�

Lighting�Shading model� There are a number of parameters that can be set through the
command glLightModel��� which were mentioned in the previous lecture� One important
parameter that we didn�t mention is whether polygons are to be drawn with �at shading
�every point in the polygon having the same shading� or smooth shading �where shading
varies across the surface by interpolating the vertex shading�� This is set by the following
command� whose argument is either GL SMOOTH �the default� or GL FLAT�

glShadeModel�GL�SMOOTH��

The shading interplation can be handled in one of two ways� In the classical Gouraud
interpolation the illumination is computed exactly at the vertices �using the above for�
mula� and the values are interpolated across the polygon� In Phong interpolation� the
normal vectors are given at each vertex� and the system interpolates these vectors in
the interior of the polygon� Then this interpolated normal vector is used in the above
lighting equation� This produces more realistic images� but takes considerably more time�
OpenGL uses Gouraud shading� Just before a vertex is given �with glVertex����� you
should specify its normal vertex �with glNormal�����

�

Lecture Notes CMSC ���

Create�Enable lights� We discussed enabling lighting and lights in a previous lecture�

De�ne surface materials� When lighting is in e�ect� rather than specifying colors using
glColor�� you do so by setting the material properties of the objects to be rendered�
OpenGL computes the color based on the lights and these properties� Surface properties
are assigned to vertices �and not assigned to faces as you might think�� In smooth shading�
this vertex information �for colors and normals� are interpolated across the entire face�
In �at shading the information for the 	rst vertex determines the color of the entire face�

Every object in OpenGL is a polygon� and in general every face can be colored in two
di�erent ways� In most graphic scenes� polygons are used to bound the faces of solid
polyhedra objects and hence are only to be seen from one side� called the front face�
This is the side from which the vertices are given in counterclockwise order� By default
OpenGL� only applies lighting equations to the front side of each polygon and the back
side is drawn in exactly the same way� If in your application you want to be able to view
polygons from both sides� it is possible to change this default �using glLightModel�� so
that each side of each face is colored and shaded independently of the other� We will
assume the default situation�

Recall from the Phong model that each surface is associated with a single color and
a coe�cient for each type of re�ection� emission� ambient� di�use� and specular� In
OpenGL� these two elements are combined into a single vector given as an RGB or
RGBA value� For example� in the traditional Phong model� a red object might have a
RGB color of ���
�
� and a di�use coe�cient of
��� In OpenGL� you would just set the
di�use material to �
���
�
��

Surface material properties are speci	ed by glMaterialf�� and glMaterialfv���

glMaterialf�GLenum face� GLenum pname� GLfloat param��

glMaterialfv�GLenum face� GLenum pname� const GLfloat �params��

It is possible to color the front and back faces separately� The 	rst argument indi�
cates which face we are coloring �GL FRONT� GL BACK� or GL FRONT AND BACK�� The sec�
ond argument indicates the parameter name �GL EMISSION� GL AMBIENT� GL DIFFUSE�
GL SPECULAR� GL SHININESS�� The last parameter is the value �either scalar or vector��
See the OpenGL documentation for more information�

Other options� You may want to enable a number of GL options using glEnable��� This proce�
dure takes a single argument� which is the name of the option� To turn each option o�� you
can use glDisable��� These optional include�

GL CULL FACE� Recall that each polygon has two sides� and typically you know that for your
scene� it is impossible that a polygon can only be seen from its back side� For example� if
you draw a cube with six square faces� and you know that the viewer is outside the cube�
then the viewer will never see the back sides of the walls of the cube� There is no need for
OpenGL to attempt to draw them� This can often save a factor of � in rendering time�
since �on average� one expects about half as many polygons to face towards the viewer
as to face away�

Backface culling is the process by which faces which face away from the viewer �the dot
product of the normal and view vector is negative� are not drawn�

By the way� OpenGL actually allows you to specify which face �back or front� that you
would like to have culled� This is done with glCullFace�� where the argument is either
GL FRONT or GL BACK �the latter being the default��

GL NORMALIZE� Recall that normal vectors are used in shading computations� You supply
these normal to OpenGL� These are assumed to be normalized to unit length in the

��

Lecture Notes CMSC ���

Phong model� Enabling this option causes all normal vectors to be normalized to unit
length automatically� If you know that your normal vectors are of unit length� then you
will not need this� It is provided as a convenience� to save you from having to do this
extra work�

Lecture ��� Texture Mapping

�Thursday� Oct �
� �����
Read� Chapter � in Hill�

Surface Detail� We have discussed the use of lighting as a method of producing more realistic
images� This is 	ne for smooth surfaces of uniform color �plaster walls� plastic cups� metallic
objects�� but many of the objects that we want to render have some complex surface 	nish
that we would like to model� In theory� it is possible to try to model objects with complex
surface 	nishes through extremely detailed models �e�g� modeling the cover of a book on a
character by character basis� or to de	ne some sort of regular mathematical texture function
�e�g� a checkerboard or modeling bricks in a wall�� But this may be infeasible for very complex
unpredictable textures�

Textures and Texture Space � Although originally designed for textured surfaces� the process
of texture mapping can be used to map �or �wrap�� any digitized image onto a surface� For
example� suppose that we want to render a picture of the Mona Lisa� We could download a
digitized photograph of the painting� and then map this image onto a rectangle as part of the
rendering process�

There are a number of common image formats which we might use� We will not discuss these
formats� Instead� we will think of an image simply as a ��dimensional array of RGB values�
Let us assume for simplicity that the image is square� of dimensions N �N �OpenGL requires
that N actually be a power of � for its internal representation�� Images are typically indexed
row by row with the upper left corner as the origin� The individual RGB pixel values of the
texture image are often called texels� short for texture elements�

Rather than thinking of the image as being stored in an array� it will be a little more elegant
to think of the image as function that maps a point �s� t� in ��dimensional texture space to an
RGB value� That is� given any pair �s� t��
 � s� t � �� the texture image de	nes the value of
T �s� t� is an RGB value�

For example� if we assume that our image array Im is indexed by row and column from
 to
N � � starting from the upper left corner� and our texture space T �s� t� is coordinatized by
s �horizontal� and t �vertical� from the lower left corner� then we could apply the following
function to round a point in image space to the corresponding array element�

T �s� t� � Im�b��� t�Nc � bsNc�� for s� t � �
� ���

In many cases� it is convenient to imagine that the texture is an in	nite function� We do
this by imagining that the texture image is repeated cyclically throughout the plane� This is
sometimes called a repeated texture� In this case we can modify the above function to be

T �s� t� � Im�b��� t�Nc mod N� bsNc mod N �� for s� t � R�

Parameterizations� We wish to �wrap� this ��dimensional texture image onto a ��dimensional
surface� We need to de	ne a wrapping function that achieves this� The surface resides in
��dimensional space� so the wrapping function would need to map a point �s� t� in texture
space to the corresponding point �x� y� z� in ��space�

��

Lecture Notes CMSC ���

(single copy)
Texture space

0 N−1
0

N−1

Im
j

i

t

s
T

Repeated texture spaceImage

s

t

Figure ��� Texture space�

This is typically done by 	rst computing a ��dimensional parameterization of the surface� This
means that we associate each point on the object surface with two coordinates �u� v� in surface
space� Then we have three functions� x�u� v�� y�u� v� and z�u� v�� which map the parameter
pair �u� v� to the x� y� z�coordinates of the corresponding surface point� We then map a point
�u� v� in the parameterization to a point �s� t� in texture space�

Let�s make this more concrete with an example� Suppose that our shape is the surface of a
unit sphere centered at the origin� We can represent any point on the sphere with two angles�
representing the point�s latitude and longitude� We will use a slightly di�erent approach� Any
point on the sphere can be expressed by two angles� � and 	� �These will take the roles of
the parameters u and v mentioned above�� Think of the vector from the origin to the point
on the sphere� Let � denote the angle in radians between this vector and the z�axis �north
pole�� �So � is related to but not equal to the latitude�� we have
 � � � �� Let 	 denote the
counterclockwise angle of the projection of this vector onto the xy�plane� Thus
 � 	 � ���
What are the coordinates of the point on the sphere as a function of these two parameters�
The z�coordinate is just cos �� and clearly ranges from � to �� as � increases from
 to �� The
length of the projection of such a vector onto the x� y�plane will be sin�� It follows that the x
and y coordinates are related to the cosine and sine of angle 	� respectively� but scaled by this
length� Thus we have

z��� 	� � cos �� x��� 	� � cos 	 sin�� y��� 	� � sin 	 sin��

θ

ϕ

x

y

z

2π
π

0

0

θ

ϕ

IW

s

t
(param)

Figure ��� Parameterization of a sphere�

If we wanted to normalize the values of our parameters to the range �
� ��� we could reparam�
eterize by letting u � ��� and v � 	������ �As an exercise� see if you can do this for the

��

Lecture Notes CMSC ���

traditional latitude and longitude representation� or try this for some other shapes� such as a
cone or cylinder��

If we are given a point �x� y� z� on the surface of the sphere� we could also derive the parameters
by inverting this process� In particular

� � arccos z 	 � arctan�y�x��

and hence

u �
arccos z

�
v �

arctan�y�x�

��
�

�Note that at the north and south poles there is a singularity in the sense that we cannot
derive a unique value for 	��

The inverse wrapping function IW �u� v� maps a point on the parameterized surface to a point
�s� t� in texture space� Intuitively� this is an �unwrapping� function� since it unwraps the
surface back to the texture� but as we will see� this is what we need� In our simple example�
we might just set this function to the identity� that is� IW �u� v� � �u� v��

The Texture Mapping Process� Suppose that the unwrapping function IW � and a parameteri�
zation of the surface are given� Here is an overview of the texture mapping process� We will
discuss some of the details below�

Project pixel to surface� First we consider a pixel that we wish to draw� We determine the
fragment of the object�s surface that projects onto this pixel� by determining which points
of the object project through the corners of the pixel� �We will describe methods for doing
this below�� Let us assume for simplicity that a single surface covers the entire fragment�
Otherwise we should average the contributions of the various surfaces fragments to this
pixel�

Parameterize� We compute the surface space parameters �u� v� for each of the four cor�
ners of the fragment� This generally requires a function for converting from the �x� y� z�
coordinates of a surface point to its �u� v� parameterization�

Unwrap and average� Then we apply the inverse wrapping function to determine the corre�
sponding region of texture space� Note that this region may generally have curved sides�
if the inverse wrapping function is nonlinear� We compute the average intensity of the
texels in this region of texture space� by computing a weighted sum of the texels that
overlap this region� and then assign the corresponding average color to the pixel�

x
yeye

Projection plane

pixel

u
v

s
t

Texture space

Surface space
i

j

Image

Figure �� Texture mapping overview�

��

Lecture Notes CMSC ���

Texture Mapping Polygons� In OpenGL� all objects are polygons� This simpli	es the texture
mapping process� For example� suppose that a triangle is being drawn� Typically� when the
vertices of the polygon are drawn� the user also speci	es the corresponding �s� t� coordinates
of these points in texture space� These are called texture coordinates� This implicitly de	nes
a linear mapping from texture space to the surface of the polygon� These are speci	ed before
each vertex is drawn� For example� a texture�mapped object in ��space with shading is drawn
using the following structure�

glBegin�GL�POLYGON��

glNormal
f�nx� ny� nz�� glTexCoord�f�tx� ty�� glVertex
f�vx� vy� vz��

���

glEnd���

There are two ways handle texture mapping in this context� The �quick�and�dirty� way �which
is by far the faster of the two� is to 	rst project the vertices of the triangle onto the viewport�
This gives us three points P�� P�� and P� for the vertices of the triangle in ��space� Let Q��
Q� and Q� denote the three texture coordinates� corresponding to these points� Now� for any
pixel in the triangle� let P be its center� We can represent P uniquely as an a�ne combination

P � ��P� ��P� ��P� for �� �� �� � ��

So� once we compute the �i�s the corresponding point in texture space is just

Q � ��Q� ��Q� ��Q��

Now� we can just apply our indexing function to get the corresponding point in texture space�
and use its RGB value to color the pixel�

What is wrong with this approach� There are two problems� which might be very signi	cant
or insigni	cant depending on the context� The 	rst has to do with something called aliasing�
Remember that we said that after determining the fragment of texture space onto which the
pixel projects� we should average the colors of the texels in this fragment� The above procedure
just considers a single point in texture space� and does no averaging� In situations where the
pixel corresponds to a point in the distance and hence covers a large region in texture space�
this may produce very strange looking results� because the color of the pixel is determined
entirely by the point in texture space that happens to correspond to the pixel�s center�

The second problem has to do with perspective� This approach makes the incorrect assumption
that a�ne combinations are preserved under perspective projection� This is not true� For
example� after a perspective projection� the centroid of a triangle in ��space is in general not
mapped to the centroid of the projected triangle� �This is true for parallel projections� but not
perspective projections�� Thus� projection followed by wrapping �using a�ne combinations in
��space� is not the same as wrapping �using a�ne combinations in ��space� and then projecting�
The latter is what we should be doing� and the former is what this quick�and�dirty method
really does�

There are a number of ways to 	x this problem� One requires that you compute the inverse of
the projection transformation� For each pixel� we map it back into three space� then compute
the wrapping function in ��space� �See Section ����� in Hill for a detailed discussion�� The
other involve slicing the polygon up into small chunks� such that within each chunk the amount
of distortion due to perspective is small�

Texture mapping in OpenGL� OpenGL supports a fairly general mechanism for texture map�
ping� The process involves a bewildering number of di�erent options� You are refered to the
OpenGL documentation for more detailed information� The very 	rst thing to do is to enable
texturing�

��

Lecture Notes CMSC ���

glEnable�GL�TEXTURE��D��

The next thing that you need to do is to input your texture and present it to OpenGL in a
format that it can access e�ciently� It would be nice if you could just point OpenGL to an
image 	le and have it convert it into its own internal format� but OpenGL does not provide
this capability� You need to input your image 	le into an array of RGB �or possibly RGBA�
values� one byte per color component �e�g� � bytes per pixel�� stored row by row� from upper
left to lower right� By the way� OpenGL requires images whose height and widths are powers
of ��

Once the array is input� call the procedure glTexImage�D�� to have the texture processed into
OpenGL�s internal format� Here is the calling sequence� There are many di�erent options�
which are explained in the documentation�

glTexImage�d�GL�TEXTURE��D� level� internalFormat� width� height� border�

format� type� image��

glTexImage�d�GL�TEXTURE��D� �� GL�RGB� ���� ���� ��

GL�RGB� GL�UNSIGNED�BYTE� myImage��

Once the image has been input and presented to OpenGL� we need to tell OpenGL how it is
to be mapped onto the surface� Again� OpenGL provides a large number of di�erent methods
to map a surface� The two most common are GL DECAL which simply makes the color of the
pixel equal to the color of the texture� and GL MODULATE �the default� which makes the colors
of the pixel the product of the color of the pixel �without texture mapping� times the color of
the texture� This latter option is applied when shading is used� since the shading is applied to
the texture as well� A example is�

glTexEnvfv�GL�TEXTURE�ENV� GL�TEXTURE�ENV�MODE� GL�MODULATE��

The last step is to specify the how the texture is to be mapped to each polygon that is drawn�
For each vertex drawn by glVertex���� specify the corresponding texture coordinates� as we
discussed earlier�

Lecture ��� Bump and Environment Mapping

�Tuesday� Oct �� �����
Read� Chapter � in Hill�

Bump mapping� Texture mapping is good for changing the surface color of an object� but we
often want to do more� For example� if we take a picture of an orange� and map it onto a
sphere� we 	nd that the resulting object does not look realistic� The reason is that there is
an interplay between the bumpiness of the orange�s peel and the light source� As we move
our viewpoint from side to side� the specular re�ections from the bumps should move as well�
However� texture mapping alone cannot model this sort of e�ect� Rather than just mapping
colors� we should consider mapping whatever properties a�ect local illumination� One such
example is that of mapping surface normals� and this is what bump mapping is all about�

What is the underlying reason for this e�ect� The bumps are too small to be noticed through
perspective depth� It is the subtle variations in surface normals that causes this e�ect� At
	rst it seems that just displacing the surface normals would produce a rather arti	cial e�ect
�for example� the outer edge of the object�s boundary will still appear to be perfectly smooth��
But in fact� bump mapping produces remarkably realistic bumpiness e�ects�

��

Lecture Notes CMSC ���

Here is an overview of how bump mapping is performed� As with texture mapping we are
presented with an image that encodes the bumpiness� Think of this as a monochrome �gray�
scale� image� where a large �white� value is the top of a bump and a small �black� value is
a valley between bumps� As with texture mapping� it will be more elegant to think of this
discrete image as an encoding of a continuous ��dimensional bump space� with coordinates s
and t� The gray�scale values encode a function called the bump displacement function b�s� t��
which maps a point �s� t� in bump space to its �scalar�valued� height� As with texture mapping�
there is an inverse wrapping function IW which maps a point �u� v� in the object�s surface
parameter space to �s� t� in bump space�

Perturbing normal vectors� Let us think of our surface as a parametric function in the parame�
ters u and v� That is� each point P �u� v� is given by three coordinate functions x�u� v�� y�u� v��
and z�u� v�� Consider a point P �u� v� on the surface of the object �which we will just call P ��
Let �n denote the surface normal vector at this point� Let �s� t� � IW �u� v�� so that b�s� t� is
the corresponding bump value� The question is� what is the perturbed normal �n� for the point
P according to the in�uence of the bump map� Once we know this normal� we just use it in
place of the true normal in our Phong illumination computations�

Here is a method for computing the perturbed normal vector� The idea is to imagine that
the bumpy surface has been wrapped around the object� The question is how do these bumps
a�ect the surface normals� This is illustrated in the 	gure below�

N

Pb(s,t)

P’
N’

Bump space
(True normal)

(Perturbed normal)

Figure �
� Bump mapping�

Since P is a function of u and v� let Pu denote the partial derivative of P with respect to
u and de	ne Pv similarly with respect to v� Since P has three coordinates� Pu and Pv can
be thought of as three dimensional vectors� Intuitively� Pu and Pv are tangent vectors to the
surface at point P � It follows that the normal vector �n is �up to a scale factor� given by

�n � Pu � Pu �

�
� x�u

y�u
z�u

�
A�

�
� x�v

y�v
z�v

�
A �

Since �n may not generally be of unit length� we de	ne !n � �n�j�nj to be the normalized normal�
If we apply our bump at point P � it will be elevated by an amount b � b�u� v� in the direction
of the normal� So we have

P � � P b!n�

is the elevated point� Note that just like P � the perturbed point P � is really a function of u and
v� We want to know what the �perturbed� surface normal should be at P �� But this requires

that we know its partial derivatives with respect to u and v� Letting �n� denote this perturbed
normal we have

�n� � P �
u � P �

v�

��

Lecture Notes CMSC ���

where P �
u and P

�
v are the partials of P

� with respect to u and v� respectively� Thus we have

P �
u �

u
�P b!n� � Pu bu!n b!nu�

Assuming that the bump b is small� we can neglect the last term� and write

P �
u Pu bu!n P �

v Pv bv!n

Taking the cross product we have

�n� �Pu bu!n�� �Pv bv!n�

 �Pu � Pv� bv�Pu � !n� bu�!n� Pv� bubv�!n� !n��

Since !n� !n �
 and �Pu � !n� � ��!n � Pu� we have

�n� �n bu�!n � Pv� � bv�!n� Pu��

The partial derivatives bu and bv depend on the particular parameterization of the object�s
surface� If we assume that the object�s parameterization has been constructed in common
alignment with the image� then we have the following formula

�n� �n bs�!n� Pv�� bt�!n � Pu��

If we have an explicit representation for P �u� v� and b�s� t�� then these partial derivatives can
be computed by calculus� If the surface a polygonal� then Pu and Pv are constant vectors over
the entire surface� and are easily computed� Typically we store b�s� t� in an image� and so do
not have an explicit representation� but we can approximate the derivatives by taking 	nite
di�erences�

In summary� for each point P on the surface with �smooth� surface normal �n we apply the
above formula to compute the perturbed normal �n�� Now we proceed as we would in any
normal lighting computation� but instead of using �n as our normal vector� we use �n� instead�
As far as I know� OpenGl does not support bump mapping�

Environment Mapping� Next we consider another method of applying surface detail to model
re�ective objects� Suppose that you are looking at a shiny waxed �oor� or a metallic sphere�
We have seen that we can model the shininess by setting a high coe�cient of specular re�ection
in the Phong model� but this will mean that the only light sources will be re�ected �as bright
spots�� Suppose that we want the surfaces to actually re�ect the surrounding environment�
This sort of re�ection of the environment is often used in commercial computer graphics� The
shiny re�ective lettering and logos that you see on television� the re�ection of light o� of water�
the shiny re�ective look of a automobile�s body� are all examples�

The most accurate way for modeling this sort of re�ective e�ect is through ray�tracing �which
we will discuss later in the semester�� Unfortunately� ray�tracing is a computationally intensive
technique� To achieve fast rendering times at the cost of some accuracy� it is common to apply
an alternative method called environment mapping �also called re�ection mapping��

What distinguishes re�ection from texture� When you use texture mapping to �paint� a
texture onto a surface� the texture stays put� For example� if you 	x your eye on a single
point of the surface� and move your head from side to side� you always see the same color
�perhaps with variations only due to the specular lighting component�� However� if the surface
is re�ective� as you move your head and look at the same point on the surface� the color
changes� This is because re�ection is a function of the relationships between the viewer� the
surface� and the environment�

��

Lecture Notes CMSC ���

Computing Re�ections� How can we encode such a complex re�ective relationship� The basic
question that we need to answer is� given a point on the re�ective surface� and given the
location of the viewer� determine what the viewer sees in the re�ection� Before seeing how
this is done in environment mapping� let�s see how this is done in the more accurate method
called ray tracing� In ray tracing we track the path of a light photon backwards from the eye
to determine the color of the object that it originated from� When a photon strikes a re�ective
surface� it bounces o�� If �v is the �normalized� view vector and �n is the �normalized� surface
normal vector� then just as we did in the Phong model� we can compute the view re�ection
vector� �rv� for the view vector as

�rv � ���n � �v��n� �v�

�See Lecture �� for a similar derivation of the light re�ection vector��

To compute the �true� re�ection� we should trace the path of this ray back from the point on
the surface along �rv� Whatever color this ray hits� will be the color that the viewer observes
as re�ected from this surface�

rv
v

n

Figure ��� Re�ection vector�

Unfortunately� it is expensive to shoot rays through ��dimensional environments to determine
what they hit� �However� this is exactly how the method of ray�tracing works�� We would like
to do what we did in texture mapping� and just look the answer up in a precomputed image�
To make this tractable� we will make one simplifying assumption�

Distant Environment� The re�ective surface is small in comparison with the distances to
the objects being re�ected in it�

For example� the re�ection of a room surrounding a silver teapot would satisfy this requirement�
However� if the teapot is sitting on a table� then the table would be too close �resulting in a
distorted re�ection�� The reason that this assumption is important is that the main parameter
in determining what the re�ection ray hits is the direction of the re�ection vector� and not the
location on the surface from which the ray starts� The space of directions is a ��dimensional
space� implying that we can precompute this information and store it in a ��dimensional image
array�

The environment mapping process� Here is a sketch of how environment mapping can be im�
plemented� The 	rst thing you need to do is to compute the environment map� First o�
remove the re�ective object from your environment� Place a small sphere or cube about the
center of the object� It should be small enough that it does not intersect any of the surround�
ing objects� �You may actually use any convex object for this purpose� Spheres and cubes
each have advantages and disadvantages� We will assume the case of a cube in the rest of the
discussion�� Project the entire environment onto the six faces of the cube� using the center of
the cube as the center of projection� That is� take six separate pictures which together form a

�

Lecture Notes CMSC ���

complete panoramic picture of the surrounding environment� and store the results in six image
	les� It may take some time to compute these images� but once they have been computed they
can be used to compute re�ections from all di�erent viewing positions�

By the way� an accurate representation of the environment is not always necessary� For exam�
ple� to simulate a shiny chrome�	nished surface� a map with varying light and dark regions is
probably good enough to fool the eye� This is called chrome mapping� But if you really want
to simulate a mirrored surface� a reasonably accurate environment map is necessary�

Now suppose that we want to compute the color re�ected from some point on the object�
As in the Phong model we compute the usual vectors� normal vector �n� view vector �v� etc�
We compute the view re�ection vector �rv from these two� �This is not the same as the light
re�ection vector� �r� which we discussed in the Phong model� but it is the counterpart where
the re�ection is taken with respect to the viewer rather than the light source�� To determine
the re�ected color� we imagine that the view re�ection vector �rv is shot from the center of
the cube and determine the point on the cube which is hit by this ray� We use the color of
this point to color the corresponding point on the surface� �We will leave as an exercise the
problem of mapping a vector to a point on the surface of the cube�� The process is illustrated
below�

rv

rv

Building the map Using the map

viewer
v

n

True reflection by
ray tracing

final color

Figure ��� Environment mapping�

Note that the 	nal color returned by the environment map is a function of the contents of
the environment image and �rv �and hence of �v and �n�� In particular� it is not a function of
the location of the point on the surface� Wouldn�t taking this location into account produce
more accurate results� Perhaps� but by our assumption that objects in the environment are
far away� the directional vector is the most important parameter in determining the result� �If
you really want accuracy� then use ray tracing instead��

Re�ection mapping through texture mapping� OpenGL does not support environment map�
ping directly� but there is a reasonably good way to �fake it� using texture mapping� Consider
a polygonal face to which you want to apply an environment map� They key question is how
to compute the point in the environment map to use in computing colors� The solution is to
compute this quantities yourself for each vertex on your polygon� That is� for each vertex on
the polygon� based on the location of the viewer �which you know�� and the location of the
vertex �which you know� and the polygon�s surface normal �which you can compute�� deter�
mine the view re�ection vector� Use this vector to determine the corresponding point in the
environment map� Repeat this for each of the vertices in your polygon� Now� just treat the
environment map as though it were a texture map�

What makes the approach work is that when the viewer shifts positions� you will change the
texture coordinates of your vertices� In normal texture mapping� these coordinates would be

�

Lecture Notes CMSC ���

	xed� independent of the viewer�s position�

Lecture ��� Review for Midterm

�Thursday� Oct ��� �����
The midterm exam will be Tues� Oct ��� The exam is closed�book and closed�notes� but you will be
allowed one sheet of notes �front and back��
Read� You are responsible only for the material covered in class� but it is a good idea to consult
Hill�s book for additional insights on the concepts discussed in class� We have discussed materials
from Chapts ��� and ��� in Hill�

Overview� So far we have covered the main elements to a top�down approach to graphics� The main
topics we have discussed include a general introduction to graphics systems� basic OpenGL�
a�ne� euclidean and projective geometry and geometric programming� perspective� and shad�
ing� Here is a summary of the topics we discussed�

Graphics Systems and Models� General overview of graphics systems and their structures� raster
graphics� RGB color and color maps� basic elements of the graphics pipeline� transformation�
projection� clipping� rasterization� When lighting is enabled� it enters in two places� 	rst after
the transformations are performed� the system also transforms the normal vectors� and then
for each vertex we computes its illumination under the current lighting model� Then when
rasterization is performed the colors at the vertices are interpolated to shade the interior of
the polygon�

A�ne and Euclidean Geometry� Recall that a�ne geometry has points and free vectors� their
associated operations� plus a�ne combinations� Points and vectors in ��dimensional a�ne
space can be represented nicely by ��element homogeneous coordinates� where the last com�
ponent is either � for points or
 for vectors� Euclidean geometry is an extension to a�ne
geometry� in which we add dot products� and hence the notions of angle and distance� We also
discussed orientations and using orientation tests for determining intersections�

Coordinate Systems and Frames� Transformations and matrices are generally used for two dif�
ferent tasks� One is moving points and objects in a space� and the other is for changing between
di�erent coordinate systems� Most graphics books tend to blur this distinction� and describe
everything in terms of matrices� but it is important to keep the distinction clear in your mind�

A coordinate frame in ��space is de	ned by an origin point and � linearly independent vectors�
Given two coordinate frames in ��space� there is a matrix that transforms coordinates given
in one frame to their representation relative to the other frame� You should know how to
construct these matrices�

A�ne Transformations� A�ne transformations are maps of a�ne space that preserve a�ne com�
binations� Such a transformation in ��space can be described as a ��� matrix �whose last row
is always �
�
�
� ���� There are two methods for constructing a�ne transformation� one by
constructing two frames� a source Fs and destination Fd� and then determining the matrix that
maps from one to the other� You should know both methods for constructing transformations�

Projective Geometry� In projective geometry we do away with free vectors and any notion of
orientation� but add points at in	nity� Recall that a point at in	nity does not have a location�
but can be pointed towards� Points in projective ��space can be represented by ��element
homogeneous coordinates� but the representation is not unique in that all nonzero scalar mul�
tiples of a vector represent the same point� Any projective transformation can be expressed
as a �� � matrix followed by a normalization� in which we divide all components of the vector
through by its last coordinate �assuming it is not zero��

��

Lecture Notes CMSC ���

Perspective� There are two types of projections in computer graphics� parallel and perspective�
�An orthogonal projection is a special case of parallel projections where the projection direction
is orthogonal to the viewing plane�� Perspective transformations are central to computer
graphics� We showed in how to describe projection in terms of a viewing frustum� and to
produce a projective transformation �in the form of a � � � matrix�� which together with
perspective division� maps the frustum into a ��d rectangle� This was called perspective with
depth because the �x� y��coordinates of the transformed points are the projection of the point�
and the z�coordinate encodes the distance from the viewer�

OpenGL� You are responsible for knowing the basic semantics� but not the exact calling sequences
for the OpenGL commands needed for ��dimensional drawing �Project ��� along with the
commands for performing ��dimensional transformations and perspective� I ammore interested
in your knowledge of the basic capabilities of OpenGL� rather than the details of the calling
sequences� In particular� be sure that you know about the matrix stacks and the following�

Transformations� glTranslate���� glRotate���� glScale��� �and the order that they
should be performed in relative to drawing commands��

Viewing� gluLootAt����

Perspective� glPerspective���

Shading and Lighting Models� We introduced a standard local shading model called the Phong
re�ection model� The idea behind this model is that all illumination could be broken down into
a mixture of four pure components� emission� ambient� di�use� and specular� We presented
formulas for each of these components� and explained how lighting is handled in OpenGL� You
are not responsible for the OpenGL procedures for lighting� but you should understand how
OpenGL does lighting�

Surface Mappings� We discussed methods for approximating complex surface 	nish properties
through texture mapping� bump mapping� and environment mapping� Recall that the key is
to store the needed information as a function� stored in a large array� and then de	ne the
inverse wrapping function for mapping points on the surface of an object to the appropriate
point in texture space� The mapping typically involves 	rst parameterizing the surface in terms
of two variables �u� v�� and then de	ning the appropriate mapping function from parameter
space to the texture space �s� t��

Lecture ��� Midterm

�Tuesday� Oct ��� �����
Midterm exam� No lecture today�

Lecture �
� Solid Modeling

�Thursday� Nov �� �����
Read� Chapter � and Sect� ����� in Hill� Some of the material is not covered in Hill�

Solid Object Representations� We begin discussion of ��dimensional object models� There is an
important fundamental split in the question of how objects are to be represented� Two common
choices are between representing the ��dimensional boundary of the object� called a boundary
representation or b�rep for short� and a volume�based representation� which is sometimes called
CSG for constructive solid geometry� Both have their advantages and disadvantages� Boundary
representations seem to be more �exible and general� and so we will start with them�

��

Lecture Notes CMSC ���

Polygonal Models� For now� we will consider just the very simplest of modeling techniques based
on approximating ��dimensional objects by piecewise �at �i�e� planar� polygonal surfaces� This
representation is called a �nonconvex	 polyhedron or a polygonal mesh� This is the approach
that OpenGL assumes�

Figure ��� A polygonal mesh representation�

Even smooth objects are assumed to be approximated by a large number of small polygonal
patches� It is easy to see from this example that polygonal meshes may not be the most
space�e�cient way of modeling smooth objects� The alternative that we will discuss later is
based on algebraic surfaces� However there are a number of properties of polygonal meshes
that make them easy to work with� For example� the intersection of two planar surfaces is
�ignoring special cases� a line� Generally when intersecting algebraic surfaces of a particular
type� the intersection curve may not be of the same type �or may be of higher algebraic degree��
Another nice aspect of polygonal patches is that surface normal vectors �which are important
for determining shading� are constant throughout the patch and operations such as linear
interpolation work nicely�

Boundary Representations of Polygonal Meshes� Suppose we wish to represent a cube using
a polygonal mesh� At its simplest we could simply store a set of polygonal faces that bound
this object �and for rendering this is often all that is needed�� This is typically 	ne for the most
basic graphics applications� since if need just want to draw the object this is all that we require�
However� it is often necessary to be able to reason more intelligently about the structure of
the object� For example� to automatically compute smooth�shading in a polyhedral object� we
might want to interpolate the normal vectors from neighboring faces� In order to perform this
interpolation we will need to known which faces are adjacent to a given face�

This suggests that we need some sort of adjacency information or as it is often called in
solid modeling topological information� Generally� a polygonal solid can be broken down into
its constituent elements according to the dimension of these elements� There are vertices
�
�dimensional�� edges ���dimensional�� and faces ���dimensional�� This applies as well to
objects bounded by curved sides and surfaces as well� but the edges and faces would not
be linear� A complete description of the object�s boundary would then consist of the set of
its vertices� edges� and faces �and associated geometric information such as coordinates and
surface normals�� along with adjacency information indicating what is connected to what�

In order to present such a representation� we will need to make some rules about how these
elements are joined to one another� For example� it seems natural that each edge should
be incident to exactly two vertices and exactly two faces� Well behaved solids are called ��
manifolds� The main property of a ��manifold is that for any point on the boundary of the
object� the local boundary is topologically equivalent into a ��dimensional disk� In particular�
this means that each edge is incident to exactly two faces� each vertex is incident to a single
cycle of faces� However there exist strange sorts of solids where this might not be satis	ed�

��

Lecture Notes CMSC ���

For example� the 	gure below left shows an edge that is incident to four faces and on the right
we have a vertex incident to two separate �cones� of vertices� We will assume that all objects
are ��manifolds� or have modi	ed so that they are in this form�

Figure ��� Non�manifold solids�

Given any ��manifold� there is a relationship between the number of vertices� edges� and faces�
which is given by Euler�s formula� If we let V � E� and F denote the number of vertices edges
and faces in an object then for most simple polyhedra we have

V �E F � ��

For example� for a cube we have V � �� E � ��� and F � �� and � � �� � � �� This can
be generalized to polyhedra having �handles� �expressed as the genus of the polyhedron� and
having multiple components� If G denotes the number of handles� and C denotes the number
of components then we have

V � E F � ��C � G��

Doubly�connected Edge List� The representations for ��manifolds are based on storing the vari�
ous incidences between entities of one dimension and the next higher and�or lower in dimension�
For example� common representations� called the winged edge� half�edge� quad�edge represen�
tations� are based on storing the following topological incidence information �in addition to
whatever geometric and graphics properties are stored�� We will discuss a representative ex�
amples� called the doubly�connected edge list� or DCEL�

The DCEL is an edge�based representation� but vertex and face information is also included
for whatever geometric application is using the data structure� There are three sets of records
one for each element in the PSLG� vertex records� a edge records� and face records� For the
purposes of unambiguously de	ning left and right� each undirected edge is represented by two
directed half�edges� See the 	gure for an example�

Vertex� Each vertex stores its coordinates� along with a pointer to any incident directed edge
that has this vertex as its origin� v�inc edge�

Face� Each face f stores a pointer to a single edge for which this face is the incident face�
f�inc edge� �See the text for the more general case of dealing with holes��

Edge� Each undirected edge is represented as two directed edges� Each edge has a pointer
to the oppositely directed edge� called its twin� Each directed edge has an origin and
destination vertex� Each directed edge is associate with two faces� one to its left and one
to its right�

We store a pointer to the origin vertex e�org� �We do not need to de	ne the destination�
e�dest� since it may be de	ned to be e�twin�org��

We store a pointer to the face to the left of the edge e�left �we can access the face to
the right from the twin edge�� This is called the incident face� We also store the next
and previous directed edges in counterclockwise order about the incident face� e�next
and e�prev� respectively�

��

Lecture Notes CMSC ���

e.next

e.left
e.prev

e.twin
e e.org

Figure ��� Doubly�connected edge list�

The next and prev pointers provide links around each face of the polygon� The next pointers
are directed counterclockwise around each face and the prev pointers are directed clockwise� To
get access to the edges of the opposite face for a given edge� access the twin pointer� Of course�
in addition the data structure may be enhanced with whatever application data is relevant� In
some applications� it is not necessary to know either the face or vertex information �or both�
at all� and if so these records may be deleted� See the book for a complete example�

Volume Based Representations� Next� consider volume�based representations� and CSG in par�
ticular� One of the most intuitive ways to describe complex objects� especially those arising in
manufacturing applications� is as set of boolean operations �that is� set union� intersection� dif�
ference� applied to a basic set of primitive objects� Manufacturing is an important application
of computer graphics� and manufactured parts made by various milling and drilling operations
can be described most naturally in this way� For example� consider the object shown in the
	gure below� It can be described as a rectangular block� minus the central rectangular notch�
minus two cylindrical holes� and union with the rectangular block on the upper right side�

= − −
−

+

Figure ��� Constructive Solid Geometry�

This idea naturally leads to a tree representation of the object� where the leaves of the tree
are certain primitive object types �rectangular blocks� cylinders� cones� spheres� etc�� and the
internal nodes of the tree are boolean operations� union �� intersection ���� di�erence ���� etc�
For example� the object above might be described with a tree of the following sort� �In the
	gure we have used for union��

The primitive objects stored in the leaf nodes are represented in terms of a primitive object
type �block� cylinder� sphere� etc�� and a set of de	ning parameters �location� orientation�
lengths� radii� etc�� to de	ne the location and shape of the primitive� The nodes of the tree
are also labeled by transformation matrices� indicating the transformation to be applied to the
object prior to applying the operation� By storing both the transformation and its inverse� as
we traverse the tree we can convert coordinates from the world coordinates �at the root of the
tree� to the appropriate local coordinate systems in each of the subtrees�

This method is called constructive solid geometry �CSG� and the tree representation is called a
CSG tree� One nice aspect to CSG and this hierarchical representation is that once a complex

��

Lecture Notes CMSC ���

+

−

−

−

Figure ��� CSG Tree�

part has been designed it can be reused by replicating the tree representing that object� �Or
if we share subtrees we get a representation as a directed acyclic graph or DAG��

Point membership� CSG trees are examples of unevaluated models� For example� unlike a b�rep
representation in which each individual element of the representation describes a feature that
we know is a part of the object� it is generally impossible to infer from any one part of the
CSG tree whether a point is inside� outside� or on the boundary of the object� As a ridiculous
example� consider a CSG tree of a thousand nodes� whose root operation is the subtraction of a
box large enough to enclose the entire object� The resulting object is the empty set" However�
you could not infer this fact from any local information in the data structure�

Consider the simple membership question� Given a point P does P lie inside� outside� or on
the boundary of an object described by a CSG tree� How would you write an algorithm to
solve this problem� For simplicity� let us assume that we will ignore the case when the point
lies on the boundary �although we will see that this is a tricky issue below��

The idea is to design the program recursively� solving the problem on the subtrees 	rst� and
then combining results from the subtrees to determine the result at the parent� We will write
a procedure Mem�P� T� where P is the point� and T is pointer to a node in the CSG tree�
This procedure returns True if the object de	ned by the subtree rooted at T contains P and
False otherwise� If T is an internal node� let T�left and T�right denote the children of T � The
algorithm breaks down into the following cases�

bool Mem�P� T�

�

if �T��isLeaf� return �membership test appropriate to T�s type��

else if �T��isUnion� return Mem�P� T��left 		 Mem�P� T��right��

else if �T��isIntersect� return Mem�P� T��left �� Mem�P� T��right��

else if �T��isDifference� return Mem�P� T��left �� �Mem�P� T��right��

�

Note that the semantics of C operations �� and �� will avoid making recursive calls when they
are not needed� For example� in the case of union� if P lies in the right subtree� then the left
subtree need not be searched�

This procedure can also be generalized to handle ray shooting intersections� Suppose that R
is a ray� and T is a CSG tree� Determine the 	rst intersection of R with any boundary in the
object de	ned by T � The task is complicated slightly by the fact that the CSG object need
not be convex� so that a ray may intersect the CSG object in a list of intervals� However the
same hierarchical approach may be used to determine the 	rst intersection�

��

Lecture Notes CMSC ���

Regularized boolean operations� There is a tricky issue in dealing with boolean operations�
This goes back to a the same tricky issue that arose in polygon 	lling� what to do about object
boundaries� Consider the intersection A �B shown in the 	gure below� The result contains a
�dangling� piece that has no width� That is� it is locally two�dimensional�

(a) (b) (c)

A B

Figure ��� �a� A and B� �b� A �B� �c� A �� B�

These low�dimensional parts can result from boolean operations� and are usually unwanted�
For this reason� it is common to modify the notion of a boolean operation to perform a
regularization step� Given a ��dimensional set A� the regularization of A� denoted A�� is the
set with all components of dimension less than � removed� Topologically� A� is de	ned to be
the closer of the interior of A

A� � closure�int�A���

Note that int�A� does not contain the dangling element� and then its closure adds back the
boundary�

When performing operations in CSG trees� we assume that the operations are all regularized�
meaning that the resulting objects are regularized after the operation is performed�

A op� B � closure�int�A op B���

where op is either �� �� or ��

Lecture ��� B�ezier Curves

�Tuesday� Nov 	� �����
Read� Chapter �� in Hill�

Representations� Today we discuss how curves and surfaces are represented in graphics systems�
There are three standard approaches to representing a curve or surface in some dimensional
space�

Explicit representation� In this form we represent one variable in terms of another z �
f�x� y�� This representation is 	ne if there is only one y�value for each x�value� but it
is impossible to represent curves for which this does not hold� spheres for example� The
upper cap of a unit sphere could be represented by

z �
p
x� y��

Because of this limitation� it is rarely used in graphics�

��

Lecture Notes CMSC ���

Implicit representation� In this representation a curve in ��d and a surface in ��d is rep�
resented as the zeros of a formula f�x� y� z� �
� We have seen the representation of a
sphere� e�g�

x� y� z� � � �
�
It is common to place some restrictions on the possible classes of functions� A polynomial
function is any function which can be expressed as a linear combination of integer powers
of x� y� and z� We say that a curve or surface is algebraic if it can be expressed in this
way as the zeroes of a polynomial function� The degree of an algebraic function is the
highest sum of its powers �e�g� the term xy�z is of degree � � � � ���

Implicit representation are 	ne for surfaces in ��space� and in general for �d����dimensional
surfaces in d�dimensional space� But to represent a lower dimensional object� say a curve
in ��space we would need to compute the intersection of two such surfaces� This involves
solving a of algebraic equations� These are generally messy to work with� limiting the
popularity of this method�

Parametric representation� In this representation a curve in ��d is given as three functions
of one parameter �x�u�� y�u�� and a surface in ��d is given as function of two parameters
�x�u� v�� y�u� v�� z�u� v��� An example is the parametric representation of a sphere

x�	� �� � cos � cos 	

y�	� �� � cos � sin 	

z�	� �� � sin��

for
 � 	 � �� and ���� � � � ���� Notice that although the sphere has an algebraic
implicit representation� it does not seem to have an algebraic parametric representation�
�The one above involves trigonometric functions� which are not algebraic��

Which representation is the best� It depends on the application� Implicit representations are
nice� for example� for computing the intersection of a ray with the surface� or determining
whether a point lies inside� outside� or on the surface� On the other hand� parametric rep�
resentations are nice if you want to break the surface up into small polygonal elements for
rendering� Parametric representations are nice because they are easy to subdivide into small
patches for rendering� and hence they are popular in graphics� Sometimes �but not always� it
is possible to convert from one representation to another� �It is easier to convert parametric
representations to implicit� than the other way around�� We will concentrate on parametric
representations in this lecture�

Continuity� Consider a parametric curve P �u� � �x�u�� y�u�� z�u��T � An important condition that
we would like our curves �and surfaces� to satisfy is that they should be as smooth as possible�
How can we formalize this mathematically as follows� We would like the curves themselves to be
continuous �that is not making sudden jumps in value�� If the 	rst k derivatives �as function
of u� exist and are continuous� we say that the curve has kth order parametric continuity�
denoted Ck continuity� Thus�
th order continuity just means that the curve is continuous�
�st order continuity means that tangent vectors vary continuously� and so on�

Note that this de	nition is dependent on the particular parametric representation used� Since
the same curve may be parameterized in di�erent� some people suggest that a more appropriate
de	nition in some circumstances is geometric continuity� denoted Gk� which depends solely on
the shape of the curve� and not on the parameterization used� One way to achieve this is to
assume that the curve has been parameterized by arc length �that is u is equal to the distance
traveled along the curve� and then Ck continuity to this parameterization�

��

Lecture Notes CMSC ���

Not continuous C continuous0 1C continuous 2C continuous

discontinuity
curvature
discontinuity

slope
discontinuity

Figure �� Degrees of continuity�

Generally we will want as high a continuity as we can get� but higher continuity generally
comes with a higher computational cost� C� continuity is usually an acceptable goal�

Interactive Curve Design� For a designer who wishes to design a curve or surface� a symbolic
representation of a curve as a mathematical formula is not very easy representation to deal
with� A much more natural method to de	ne a curve is to provide a sequence of control points�
and to have a system which automatically generates a curve which approximates this sequence�
Such a procedure inputs a sequence of points� and outputs a parametric representation of a
curve� �This idea can be generalized to surfaces as well� but let�s study it 	rst in the simpler
context of curves��

It might seem most natural to have the curve pass through the control points� that is to inter�
polate between these points� There exists such an interpolating polygon� called the Lagrangian
interpolating polynomial� However there are a number of di�culties with this approach� For
example� suppose that the designer wants to interpolate a nearly linear set of points� To do so
he selects a sequence of points that are very close to lying on a line� However� polynomials tend
to �wiggle�� and as a result rather than getting a line� we get a wavy curve passing through
these points�

ApproximationInterpolation

Figure �
� Interpolation versus approximation�

Instead our approach will be to merely approximate the control points� We will discuss two
methods for doing this� called B#ezier and B�spline curves�

The de Casteljau Algorithm� Let us continue to consider the problem of de	ning a smooth curve
that approximates a sequence of control points� hp��p�� � � �i� We begin with the simple idea
on which these curves will be bsaed� Let us start with the simplest case of two control points�
The simplest �curve� which approximates them is just the line segment p��p�� The function
mapping a parameter u to a points on this segment involves a simple a�ne combination�

p�u� � ��� u�p� up� for
 � u � ��
Observe that this is a weighted average of the points� and for any value of u� the two weighting
or blending functions u and ��� u� are nonnegative and sum to ��

Now� let us consider how to generalize this to three points� We want a smooth curve approxi�
mating them� Consider the line segments p�p� and p�p�� From linear interpolation we know
how to interpolate a point on each� say�

p���u� � ��� u�p� up� p���u� � �� � u�p� up��

�

Lecture Notes CMSC ���

p0

p1 p2

p (u)01

p (u)21

p (u)11

p (u)02
p (u)12

p0

p1

01

3ppp0

p1

2

p (u)

p (u)11

p(u) p(u)
p(u)

Figure ��� Repeated interpolation�

Now that we are down to two points� let us apply the above method to interpolate between
them�

p�u� � ��� u�p���u� up���u�

� ��� u����� u�p� up�� u���� u�p� up��

� ��� u��p� ��u��� u��p� u�p��

An example of the resulting curve is shown in the 	gure on the left�

p2

0

2p

1p

p

p1

p3

p0

Figure ��� B#ezier curves for three and four control points�

This is a algebraic parametric curve of degree �� called a B
ezier curve of degree �� Observe
that the function involves a a weighted sum of the control points using the following blending
functions�

b���u� � ��� u�� b���u� � �u��� u� b���u� � u��

As before� observe that for any value of u the blending functions are all nonnegative and all
sum to �� and hence each point on the curve is a convex combination of the control points�

Let�s carry this one step further� Consider four control points p�� p�� p�� and p�� First use
linear interpolation between each pair yielding the points p���u� and p���u� and p���u� as
given above� Then compute the linear interpolation between each pair of these giving

p���u� � ��� u�p���u� up���u� p���u� � �� � u�p���u� up���u��

Finally interpolate these ��� u�p���u� up���u�� Expanding everything yields

p�u� � ��� u��p� ��u��� u���p� ��u
��� � u��p� u�p��

This process of repeated interpolation is called the de Casteljau algorithm� named after a
CAGD �computer�aided geometric design� designer working for a French automobile manu�
facturer� The 	nal result is a B#ezier curve of degree �� Again� observe that if you plug in

�

Lecture Notes CMSC ���

any value for u� these blending functions are all nonnegative and sum to �� In this case� the
blending functions are

b���u� � ��� u��

b���u� � �u��� u��

b���u� � �u���� u�

b���u� � u��

Notice that if we write out the coe�cients for the bending functions �adding a row for the
degree � functions� which you can derive on your own�� we get the following familiar pattern�

�
� �

� � �
� � � �

� � � � �

This is just the famous Pascal�s triangle� In general� the ith blending function for the degree
k B#ezier curve has the general form

bik�u� �

�
k

i

�
��� u�k�iui�

These polynomial functions are important in mathematics� and are called the Bernstein poly�
nomials�

u

03b (u)

13 23b (u)

33b (u)

b (u)

0 1

Figure ��� B#ezier blending functions �Bernstein polynomials� of degree ��

In the case of a cubic parametric curve we can express the 	nal result in matrix form as

p�u� � ��� u� u�� u��MB

�
		

p�
p�
p�
p�

�
�� �

where MB is called the B
ezier geometry matrix

MB �

�
		

�

�� �

� �� �

�� � �� �

�
�� �

The pi�s are interpreted as row vectors here�

��

Lecture Notes CMSC ���

B�ezier curve properties� B#ezier curves have a number of interesting properties� Because each
point on a B#ezier curve is a convex combination of the control points� the curve lies entirely
within the convex hull of the control points� �This is not true of interpolating polynomials
which can wiggle outside of the convex hull�� Observe that all the blending functions are
 at
u �
 except the one associated with p� which is � and so the curve starts at p� when u �
�
By a symmetric observation� when u � � the curve ends at the last point� By evaluating
the derivatives at the endpoints� it is also easy to verify that the curve�s tangent at u �
 is
collinear with the line segment p�p�� A similar fact holds for the ending tangent and the last
line segment�

If you compute the derivative of the curve with respect to u� you will 	nd that it is itself
a B#ezier curve� Thus� the parameterized tangent vector of a B#ezier curve is a B#ezier curve�
Finally the B#ezier curve has the following variation diminishing property� Consider the poly�
line connecting the control points� Given any line �� the line intersects the B#ezier curve no
more times than it intersects this polyline� Hence the sort of �wiggling� that we saw with
interpolating polynomials does not occur with B#ezier curves�

Lecture ��� Bezier Surfaces and B�splines

�Thursday� Nov
� �����
Read� Chapter �� in Hill�

Subdividing B�ezier curves� Last time we introduced the mathematically elegant B#ezier curves�
Before going on to discuss surfaces� we need to consider one more issue� In order to render
curves or surfaces using a system like OpenGL� which only supports rendering of �at objects� we
need to approximate the curve by a number of small linear segments� Typically this is done by
computing a su�ciently dense set of points along the curve or surface� and then approximating
the curve or surface by a collection of line segments or polygonal patches� respectively� B#ezier
curves �and surfaces� lend themselves to a very elegant means of recursively subdividing them
into smaller pieces� This is nice� because if we want to render a curve at varying resolutions�
we can perform either a high number or low number of subdivisions� Furthermore� if part of
the surface is visible and part is not� we can adaptively subdivide the surface where it visible�
and leave the other part alone�

Here is a simple subdivision scheme works for these curves� Let hp�� � � � �p�i denote the original
sequence of control points �this can be adapted to any number of points�� Relabel these
points as hp��� � � � �p��i� Perform the repeated interpolation construction using the parameter
u � ���� Label the vertices as shown in the 	gure below� Now� consider the sequences
hp���p���p���p��i and hp���p���p���p��i� Each of these sequences de	nes its own B#ezier
curve� Amazingly� the concatenation of these two B#ezier curves is equal to the original curve�
�We will leave the proof of this as an exercise��

p2p1

p0 3p p

02

p21

p

02 p12

p21p01

p00 30p

p03

p12

p
p p

11

p01

p00

0310 p20

30

p

Figure ��� B#ezier subdivision�

��

Lecture Notes CMSC ���

Repeating this subdivision allows us to split the curve into as small a set of pieces as we would
like� and at all times we are given each subcurve in exactly the same form as the original�
represented as a set of four control points� Typically this is done until each of the pieces is
su�ciently close to being �at� or is su�ciently small�

B�ezier Surfaces� Last time we de	ned B#ezier curves� It is an easy matter to extend this notion to
B#ezier surfaces� Recall that B#ezier curves were de	ned by a process of repeated interpolation�
We can extend the notion of interpolation along a line to interpolation along two dimensions�
This is called bilinear interpolation� Suppose that we are given four control points p��� p���
p��� and p��� �Note that the indexing has changed here relative to the previous section�� We
use two parameters u and v� We interpolate between p�� and p�� using u� between p�� and p��
using u� and then interpolate between these two values using v�

p�u� v� � ��� v���� � u�p�� up��� v��� � u�p�� up���

� ��� v��� � u�p�� ��� v�up�� v�� � u�p�� vup��

Note that this is not a linear interpolation �because u and v are multiplied times each other��
Recalling that ��� u� and u are the 	rst�degree B#ezier blending functions b����u� and b����u��
we see that this can be written as

p�u� v� � b���v�b���u�p�� b���v�b���u�p�� b���v�b���u�p�� b���v�b���u�p���

P10

P11
P11

P00
01

P

01

20

P02

P

P

10

21

P12

P
21

P

P

00P

v

u

v

u

Figure ��� B#ezier surfaces�

Generalizing this to higher degree� say cubic B#ezier surfaces� we have we have a �� � array of
control points� pij�
 � i� j � �� and the resulting parametric formula is

p�u� v� �
�X

i��

�X
j��

bi���v�bj���u�pi�j�

This is sometimes called a tensor product construction� �By the way� there are other ways of
mapping curves to surfaces� which do not have quite such a restrictive row�column structure�
but they are quite a bit more involved to explain��

Observe that if we 	x the value of v� then as u varies we get a B#ezier curve� Similarly if we
	x u and let v vary then it traces out a B#ezier curve� The 	nal surface is this combination of
curves� It has the same convex hull and tangent properties that B#ezier curves have�

How are B#ezier surfaces rendered in OpenGL� We can generalize the subdivision process for
curves in a straightforward manner �using u � v � ����� This will result in four sets of control
points� where the union of the resulting surface patches is equal to the original surface� Again�
the subdivision process may be repeated until each patch is su�ciently close to being �at or
is su�ciently small� after which the resulting control points de	ne the vertices of a polygon�

��

Lecture Notes CMSC ���

Cubic B�splines� Although B#ezier curves are very elegant� they do have some shortcomings� The
main problem is that if we want to de	ne a single complex curve with many variations and
wiggles� we need to have a large number of control points� But this leads to a high degree
polynomial� hence more complex calculations� The fact that the B#ezier blending functions are
all nonzero over the entire range u � �
� �� means that these functions have global support�
This means that the movement of even one control point has an e�ect on the entire curve
�although it is most noticeable only in the region of the point�� A system that provides for
local support would be prefered� where each control point only a�ects a local portion of the
curve�

One solution would be to link together a many low degree �e�g� cubic� B#ezier curves end to
end� Getting the joints to link with C� continuity �recall that this means that the function
and its 	rst two derivatives are continuous� is a bit tricky� �We will leave as an exercise the
conditions on the control points that would guarantee this�� What we would like is a method
of stringing many points together so that we get the best of all worlds� low degree� many
control points� and C� �or higher� continuity�

B�splines were developed to address these shortcomings� The idea is that we will still use
smooth blending functions multiplied times the control points� but these functions will have the
property that these blending functions are nonzero only over a small amount of the parameter
range� Thus these functions have only local support� Over the nonzero range� they will consist
of the concatenation of smooth polynomials� As before each point on the curve will be given
by blending the control points

p�u� �
mX
i��

Bi�u�pi�

where Bi�u� denotes the ith blending function� The 	gure below left gives a crude rendering of
B�splines blending functions of order �� We will not discuss B�spline surfaces explicitly� since
they follow from exactly the same tensor product construction used with B#ezier surfaces�

uk

B (u)0

B (u)1

B (u)2

B (u)3 uk+1 uk+3uk+2

Figure ��� B�spline basis function�

Note that it is impossible to de	ne a single polynomial that is zero on some range and nonzero
on some other� So to de	ne the B�spline blending functions we will need to subdivide the
parameter space u into a set of intervals� and de	ne a di�erent polynomial over each interval�
The result is a piecewise polynomial function� If we join the pieces with su�ciently high
continuity then the resulting spline will have the same continuity� In the 	gure above right�
each interval contains a di�erent polynomial function�

The B�spline blending functions are a generalization of the B#ezier blending functions� Let�s
suppose that we want to generate a curve of degree d� �The standard cubic B�spline will be
the case d � ��� Also let us assume that we have m � data points p�� � � � � pm� Rather than
work over the interval
 � u � � as we did for B#ezier curves� it will be notationally convenient
to extend the range of u to a set of intervals�

umin � u� � u� � u� � � � �� un � umax�

��

Lecture Notes CMSC ���

These parameter values are called knot points� �Note that the term �point� does not refer to
a point in space� as with control points� These are just scalar values�� Each of the blending
functions will consist of the concatenation of polynomial functions� with one polynomial over
each knot interval� �ui��� ui�� For simplicity you might think of these as being intervals of unit
length for the time being� but we will see later that there are advantages to making intervals of
di�erent sizes� There will be a relationship between the number of intervals n and the number
of points m� which we will consider later�

How do we de	ne the B�spline blending functions� There are two ways to do this� The 	rst is
to write down the requirements that the blending functions must be C� continuous at the joint
points� and that they satisfy the convex hull property� Together these constraints completely
de	ne B�splines� �We leave this as an exercise��

Instead� as with the B#ezier blending functions� we will do this by recursively applying linear
interpolation to the blending functions of the next lower degree� An elegant recursive expression
of the blending function �but somewhat di�cult to understand� is given by the Cox�deBoor
recursion� Let Bi�d�u� denote the ith blending function for a B�spline of degree d�

Bk���u� �

�
� if uk � u
 uk���

 otherwise�

Bk�d�u� �
u� uk

uk�d � uk
Bk�d���u�

uk�d�� � u

uk�d�� � uk��
Bk���d���u��

This is quite hard to comprehend at 	rst sight� However observe that as with B#ezier curves�
the curve at each degree is expressed as the weighted average of two curves and the next lower
degree� It can be proved �by induction� that irrespective of the knot spacing the blending
functions sum to ��

If you grind through the de	nitions� then you will see that Bk���u� is a step function that is �
in the interval �uk� uk���� Bk���u� spans two intervals and is a piecewise linear function that
goes from
 to � and then back to
� Bk���u� spans three intervals and is a piecewise quadratic
that grows from
 to ���� then up to ��� in the middle of the second interval� back to ����
and back to
� Finally Bk���u� is a cubic that spans four intervals growing from
 to ��� to
���� then back to ��� and to
� Thus� successively higher degrees are successively smoother�

Notice that only the basis case of the recursion is de	ned in a piecewise manner� but all the
other functions inherit their piecewise nature from this�

B
03

B
02

B
01

B
00

Figure ��� B�spline blending functions�

Knot Selection� We have left the issue of how to select the knot points unspeci	ed� The simplest
way to select the knots is to space them evenly� These are called uniform B�splines� However

��

Lecture Notes CMSC ���

if you do this you will notice that you will not have the nice property that we had with B#ezier
curves� that the curve starts at the 	rst point and ends with the last� The reason is that
the B#ezier blending functions summed to � for all parameter values and in particular the 	rst
blending function was equal to � for u �
� However with B�splines� we do not naturally have
this property�

If our curve is a closed curve� then we can de	ne the blending function cyclically� If the curve
is open we need a method to allow us to tie down the endpoints� This is done by allowing
the knot points to vary nonuniformly with u� These are called nonuniform B�splines� In
particular� if you repeat a knot value multiple times� then it has the e�ect of increasing the
weight of the blending function at this parameter value� �In the Cox�deBoor formula� you will
get the fraction
�
 which should be interpreted as ��� For example� if you repeat a knot point
d � times� then the blending function will grow to � at the corresponding parameter value�
and the curve will pass through the corresponding data point at this parameter value�

So to tie our B�spline to its endpoints we apply the following procedure� Given m � data
points p��p�� � � � �pm� create m � �d knot points� For example� for a cubic �d � �� spline
we use the knot values

h
�
�
�
� �� �� � � ��m � ��m�m�m�mi�
�Adding � extra
�s and � extra m�s�� Notice that this does not alter the number of control
points� it simply causes the Cox�deBoor recursion to give added weight in the blending function
to the 	rst and last points when u is near umin and umax� respectively�

B�splines curves and surfaces are a popular in geometric design applications�

The subdivision method for B#ezier curves can also be generalized to B�splines� However there
is another generalization of both that represents the state of the art in the 	eld� which we
discuss next�

NURBS� It turns out that there is one more class of splines that encompasses both B#ezier curves
and surfaces as well as B�splines� with the strange name NURBS� which stands for nonuniform
rational B�splines� We will not discuss NURBS in detail� but just present a high�level intuition
as to their origin�

A rational function is the ratio of two polynomials� There are curves that can be expressed as
rational functions that cannot be expressed exactly using simple polynomials� For example�
we gave a trigonometric parameterization of a circle� There is no known exact polynomial
parameterization� However there is a rational parameterization of a unit circle on the xy�
plane�

x�u� �
�� u�

� u�

y�u� �
�u

� u�

z�u� �

Observe that as u tends from
 to � this traces out the upper half of the circle �with u � �
corresponding to
 degrees� and from
 to �� it traces out the bottom half�

Here is one last clever use of homogeneous coordinates� Rather than limiting ourselves to
computing splines in ��space� let us put our control points in projective space �using homo�
geneous coordinates�� For example the above curve could be given as a regular quadratic
parameterization using homogeneous coordinate�

x�u� � �� u�

��

Lecture Notes CMSC ���

y�u� � �u

z�u� �

w�u� � � u�

Now� when we perform perspective normalization� the w�coordinate is divided through and we
get a rational parameterization for free" This is essential idea behind NURBS� � dimensional
nonuniform B�splines� followed by normalization�

A nice property of NURBS is that they are preserved under projective transformations� Thus�
to render the projection of a NURB curve� project the control points and then render the
NURB resulting from the projected control points�

Lecture ��� Ray Tracing

�Tuesday� Nov �� �����
Read� Chapter �� in Hill�

Ray Tracing� Ray tracing is among the conceptually simplest methods for synthesizing very real�
istic images� Unlike the simple polygon rendering methods used by OpenGL� ray tracing can
easily produce shadows� and it can model re�ective and transparent objects� Ray tracing also
forms the basis of many approaches to more complex types of image generation �for example�
it is used in Monte Carlo radiosity�� In spite of its conceptual simplicity� ray tracing can be
computationally quite intensive� and hence it is not usually used in interactive contexts� Today
we will discuss the basic elements of ray tracing� and next time we will discuss the details of
handling ray intersections in greater detail�

The Basic Idea� Consider our standard perspective viewing scenario� There is a viewer located at
some position� and in front of the viewer is the view plane� and on this view plane is a window�
We want to render the scene that is visible to the viewer through this window� Consider an
arbitrary point on this window� The color of this point is determined by the light ray that
passes through this point and hits the viewer�s eye�

More generally� light travels in rays that are emitted from the light source� and hit objects
in the environment� When light hits a surface� some of its energy is absorbed� and some is
re�ected in di�erent directions� �If the object is transparent� light may also be transmitted
through the object�� The light may continue to be re�ected o� of other objects� Eventually
some of these re�ected rays 	nd their way to the viewer�s eye� and only these are relevant to
the viewing process�

If we could accurately model the movement of all light in a ��dimensional scene then in theory
we could produce very accurate renderings� Unfortunately the computational e�ort needed for
such a complex simulation would be prohibitively large� How might we speed the process up�
Observe that most of the light rays that are emitted from the light sources never even hit our
eye� Consequently the vast majority of the light simulation e�ort is wasted� This suggests that
rather than tracing light rays as they leave the light source �in the hope that it will eventually
hit the eye�� instead we reverse things and trace backwards along the light rays that hit the
eye� This is the idea upon which ray tracing is based�

Imagine that the viewing window is replaced with a 	ne mesh of horizontal and vertical grid
lines� so that each grid square corresponds to a pixel in the 	nal image� We shoot rays out
from the eye through the center of each grid square in an attempt to trace the path of light
backwards toward the light sources� Consider the 	rst object that such a ray hits� We want to

��

Lecture Notes CMSC ���

know the intensity of re�ected light at this surface point� This depends on a number of things�
principally the re�ective and color properties of the surface� and the amount of light reaching
this point from the various light sources� The amount of light reaching this surface point is
the hard to compute accurately� This is because light from the various light sources might be
blocked by other objects in the environment and it may be re�ected o� of others�

A purely local approach to this question would be to use the model we discussed in the Phong
model� namely that a point is illuminated if the angle between the normal vector and light
vector is acute� In ray tracing it is common to use a somewhat more global approximation� We
will assume that the light sources are points� We shoot a ray from the surface point to each of
the light sources� For each of these rays that succeeds in reaching a light source before being
blocked another object� we infer that this point is illuminated by this source� and otherwise
we assume that it is not illuminated� and hence we are in the shadow of the blocking object�
�Can you imagine a situation in which this model will fail to correctly determine whether a
point is illuminated�� This model is illustrated on the left in the following 	gure�

Ray tracing Recursive ray tracing for
reflective and transparent objects.

Figure ��� Ray Tracing�

Given the direction to the light source and the direction to the viewer� and the surface normal
�which we can compute because we know the object that the ray struck�� we have all the
information that we need to compute the re�ected intensity of the light at this point� say� by
using the Phong model and information about the ambient� di�use� and specular re�ection
properties of the object� We use this model to assign a color to the pixel� We simply repeat
this operation on all the pixels in the grid� and we have our 	nal image�

Even this simple ray tracing model is already better than what OpenGL supports �because� for
example� OpenGL�s local lighting model does not compute shadows�� The ray tracing model
can easily be extended to deal with re�ective objects �such as mirrors and shiny spheres� and
transparent objects �glass balls and rain drops�� For example� when the ray hits a re�ective
object� we compute the re�ection ray and shoot it into the environment� We invoke the ray
tracing algorithm recursively� When we get the associated color� we blend it with the local
surface color and return the result� The generic algorithm is outlined below�

Generic Ray Tracer Program

main�� �

for �i � �� i � nRows� i��� �

for �j � �� j � nCols� j��� �

Ray R � ray from eye through window row i and column j�

imagei�j� � trace�R��

�

�

�

��

Lecture Notes CMSC ���

RGBColor trace�Ray R� �

Shoot ray R into the scene and let X be the first object hit and

P be the point of contact with this object�

if �X is reflective� �

Ray R� � reflection ray at P�

Color C� � trace�R���

�

if �X is transparent� �

Ray R� � refraction ray at P�

Color C� � trace�R���

�

C � result of Phong model at P combining the effects of C� and C�

and the surface color at P�

return C�

�

There are two questions to be considered� How to determine what object the ray intersects
�which we will consider next time� and how to use this information to determine the re�ected
color� We will concentrate on this latter item today�

Re�ection� Recall the Phong re�ection model� Each object is associated with a color� and its
coe�cients of ambient� di�use� and specular re�ection� denoted �a� �d and �s� To model the
re�ective component� each object will be associated with an additional parameter called the
coe�cient of re�ection� denoted �r � As with the other coe�cients this is a number in the
interval �
� ��� Let us assume that this coe�cient is nonzero� We compute the view re�ection
ray �which equalizes the angle between the surface normal and the view vector�� Let �v denote
the normalized vector that points backwards along the viewing ray� �This is essentially the
same as the view vector used in the Phong model� but it may not point directly back to the eye
because of re�ections�� Let �n denote the outward pointing normalized surface normal vector�
The normalized view re�ection vector� denoted �rv was derived earlier this semester�

�rv � ���n � �v��n� �v�

rv

n

v

Figure �� Re�ection�

Next we shoot the ray emanating from the surface contact point along this direction and apply
the above ray�tracing algorithm recursively� Eventually� when the ray hits a nonre�ective
object� the resulting color is returned� This color is then factored into the Phong model� as
will be described below� Note that it is possible for this process to go into an in	nite loop� if
say you have two mirrors facing each other� To avoid such looping� it is common to have a
maximum recursion depth� after which some default color is returned� irrespective of whether
the object is re�ective�

Transparent objects and refraction� To model refraction� sometimes called transmission� we
maintain a coe�cient of transmission� denoted �t� We also need to associate each surface

�

Lecture Notes CMSC ���

with two additional parameters� the indices of refraction� for the incident side �i and the
transmitted side� �t� Recall from physics that the index of refraction is the ratio of the speed
of light through a vacuum versus the speed of light through the material� Typical indices of
refraction include water� ������ glass� ���� and diamond� ����� Snell�s law says that if a ray
is incident with angle 	i �relative to the surface normal� then it will transmitted with angle 	t
�relative to the opposite normal� such that

sin 	i
sin 	t

�
�t
�i
�

i

tη

wi

θ

θt

n

−n

m

m wt t

i

t

v

iη

Figure �
� Refraction�

Let us work out the direction of the transmitted ray from this� As before let �v denote the
normalized view vector� directed back along the incident ray� Let �t denote the unit vector
along the transmitted direction� which we wish to compute� The orthogonal projection of �v
onto the normalized normal vector �n is

�mi � ��v � �n��n � �cos 	i��n�
Consider the two parallel horizontal vectors �wi and �wt in the 	gure� We have

�wi � �mi � �v�

Since �v and �t are each of unit length we have

�t
�i
�
sin 	i
sin 	t

�
j�wij�j�vj
j�wtj�j�tj

�
j�wij
j�wtj �

Since �wi and �wt are parallel we have

�wt �
�i
�t
�wi �

�i
�t
��mi � �v��

The projection of �t onto ��n is �mt � ��cos 	t��n� and hence the desired refraction vector is�
�t � �wt �mt �

�i
�t
� �mi � �v�� �cos 	t��n �

�i
�t
��cos 	i��n� �v� � �cos 	t��n

�

�
�i
�t
cos 	i � cos 	t

�
�n� �i

�t
�v�

�To be completely accurate� the index of refraction depends on the wavelength of light being transmitted� This is
what causes white light to be spread into a spectrum as it passes through a prism� But since we do not model light
as an entire spectrum� but only through a triple of RGB values 	which produce the same color visually� but not the
same spectrum physically
 we will not get realistic results� For simplicity we assume that all wavelengths have the
same index of refraction�

Lecture Notes CMSC ���

We have already computed cos 	i � ��v � �n�� We can derive cos 	t from Snell�s law and basic
trigonometry�

cos 	t �

q
�� sin� 	t �

s
��

�
�i
�t

��
sin� 	i �

s
��

�
�i
�t

��
��� cos� 	i�

�

s
��

�
�i
�t

��
��� ��v � �n����

What if the term in the square root is negative� This is possible if ��i��t� sin 	i � �� In
particular� this can only happen if �i��t � �� meaning that you are already inside an object
with an index of refraction greater than �� Notice that when this is the case� Snell�s law
breaks down� since it is impossible to 	nd 	t whose sine is greater than �� This is a situation
where total internal re�ection takes place� The light source is not refracted at all� but is
re�ected within the object� �For example� this is one of the important elements in the physics
of rainbows�� When this happens� the refraction reduces to re�ection and so we set �t � �rv� the
view re�ection vector�

Illumination Equation Revisited� We can combine the familiar Phong illumination model with
the re�ection and refraction computed above� We assume that we have shot a ray� and it has
hit an object at some point P �

Light sources� Let us assume that we have a collection of light source L�� L�� � � �� Each is
associated with an RGB vector of intensities �any nonnegative values�� Let La denote the
global RGB intensity of ambient light�

Visibility of Light Sources� The function Vis�P� i� returns � if light source i is visible to
point P and
 otherwise� If there are no transparent objects� then this can be computed
by simply shooting a ray from P to the light source and seeing whether it hits any objects�

Material color� We assume that an object�s material color is given by C� This is an RGB
vector� in which each component is in the interval �
� ��� We assume that the specular
color is the same as the light source� and that the object does not emit light� Let �a� �d�
and �s denote the ambient� di�use� and specular coe�cients of illumination� respectively�
These coe�cients are typically in the interval �
� ��� Let � denote the specular shininess
coe�cient�

Vectors� Let �n� �h� and �l denote the normalized normal� halfway�vector� and light vectors� See
the lecture on the Phong model for how they are computed�

Attenuation� We assume the existence of general quadratic light attenuation� given by the
coe�cients a� b� and c� as before� Let di denote the distance from the contact point P to
the ith light source�

Re�ection and refraction� Let �r and �t denote the re�ective and transmitted �refracted�
coe�cients of illumination� If �t
�
 then let �i and �t denote the indices of refraction�
and let �rv and �t denote the normalized view re�ection and transmission vectors�

Let the pair �P��v� denote a ray originating at point P and heading in direction �v� The complete
ray�tracing re�ection equation is�

I � �aLaC
X
i

Vis�P� i�
Li

a bdi cd�i
��dCmax�
� �n ��l� �smax�
� ��n ��h����

 �rtrace�P��rv� �ttrace�P��t��

�

Lecture Notes CMSC ���

Note that if �r or �t are equal to
 �as is often the case� then the corresponding ray�trace
call need not be made� Observe that attenuation and lighting are not applied to results of
re�ection and refraction� This seems to behave reasonably in most lighting situations� where
lights and objects are relatively close to the eye�

Lecture ��� Ray Intersections

�Thursday� Nov �� �����
Read� Chapter �� in Hill�

Rays and Intersections� The main question that we left unresolved in ray tracing is how to
actually perform intersections between rays and objects in our scene� We will discuss this
today� First o�� how is a ray represented� An obvious method is to represent it by its origin
point P and a directional vector �u� Points on the ray can be described parametrically using a
scalar t�

R � fP t�u j t �
g�
Notice that our ray is open� in the sense that it does not include its endpoint� This is done
because in many instances �e�g�� re�ection� we are shooting a ray from the surface of some
object� We do not want to consider the surface itself as an intersection� In implementing a
ray tracer� it is also common to store some additional information as part of a ray object� For
example� you might want to store the value t� at which the ray hits its 	rst object �initially�
t� ��� and perhaps a pointer to the object that it hits�
Given an object in the scene� a ray intersection procedure determines whether the ray intersects
and object� and if so� returns the value t� �
 at which the intersection occurs� �This is a natural
use of object�oriented programming� since the intersection procedure can be made a member
function of the object�� Otherwise� if t� is smaller than the current t� value� then t� is set to
t�� Otherwise the trimmed ray does not intersect the object�

Ray�Sphere Intersection� Let us consider one of the most popular nontrivial intersection tests
for rays� intersection with a sphere in ��space� We represent a ray R by giving its origin point
P and a normalized directional vector �u� Suppose that the sphere is represented by giving its
center point C and radius r �a scalar�� Our goal is to determine the value of t for which the
ray strikes the sphere� or to report that there is no intersection� In our development� we will
try to avoid using coordinates� and keep the description as coordinate�free as possible�

P
u

r

C

P+tu

Figure ��� Ray�sphere intersection�

We know that a point Q lies on the sphere if its distance from the center of the sphere is r�
that is if jQ� Cj � r� So the ray intersects at the value of t such that

j�P t�u�� Cj � r�

Notice that the quantity inside the j�j above is a vector� Let �v � C � P � This gives us

jt�u� �vj � r�

�

Lecture Notes CMSC ���

We know u� v� and r and we want to 	nd t� By the de	nition of length using dot products we
have

�t�u� �v� � �t�u� �v� � r��

Observe that this equation is scalar valued �not a vector�� We use the fact that dot�product
is a linear operator� and so we can manipulate this algebraically into�

t���u � �u�� �t��u � �v� ��v � �v�� r� �

This is a quadratic equation at� bt c �
� where

a � ��u � �u� � � �since �u is normalized��

b � ����u � �v��
c � ��v � �v�� r�

We can solve this using the quadratic formula

t �
�b�pb� � �ac

�a
�

Numerical Issues� There are some numerical instabilities to beware of� If r is small relative to j�vj
then we may lose the e�ect of r in the discriminant� It is suggested that rather than computing
this in the straightforward way� instead use the following algebraically equivalent manner� The
discriminant is D � b� � �ac� First observe that we can express the determinant as

D � ��r� � j�v � ��u � �v��uj���

�We will leave it as an exercise to verify this�� If D is negative then there is no solution�
implying that the ray misses the sphere� If it is positive then there are two real roots�

t �
�b�p

D

�a
� ��u � �v� �

p
r� � j�v � ��u � �v��uj��

Which root should we take� Recall that t �
 and increases as we move along the ray�
Therefore� we want the smaller positive root� If neither root is positive then there is no
intersection� Consider

t� � ��u � �v��
p
r� � j�v � ��u � �v��uj� t� � ��u � �v�

p
r� � j�v � ��u � �v��uj��

If t� �
 then take it� otherwise if t� �
 then take it� Otherwise� there is no intersection
�since it intersects the negative extension of the ray��

Note that it is a not a good idea to compare �oating point numbers against zero� since �oating
point errors are always possible� A good rule of thumb is to do all of these ��d computations
using doubles �not �oats� and perform comparisons against some small value instead� e�g�
SMALL � 	E�
� The proper choice of this parameter is a bit of �hokus�pokus�� It is usually
adjusted until the 	nal image looks okay�

More Care with Roundo
 Errors� There is still a possibility of roundo� error if we simply use
the formulas given above for solving the quadratic equation� The problem is that when two
very similar numbers are subtracted we may lose many signi	cant digits� Recall the basic
equation at� bt c �
� Rather than applying the quadratic formula directly� numerical

�

Lecture Notes CMSC ���

analysts recommend that you 	rst compute the root with the larger absolute value� and then
use the identity t�t� � c�a� to extract the other root� In particular� if b �
 then use�

t� �
�b

p
D

�a
� ��u � �v�

p
r� � j�v � ��u � �v��uj��

t� �
c

at�
�only if t� �
��

Otherwise� if b �
� then we use

t� �
�b �pD

�a
� ��u � �v� �

p
r� � j�v � ��u � �v��uj��

t� �
c

at�
�only if t�

��

As before� select the smaller positive root as the solution� In typical applications of ray tracing�
this extra care does not seem to be necessary� but it is good thing to keep in mind if you really
want to write a robust ray tracer�

Normal Vector� In addition to computing the intersection of the ray with the object� it is also
necessary to compute the normal vector at the point of intersection� In the case of the sphere�
note that the normal vector is directed from the center of the sphere to point of contact� Thus�
if t is the parameter value at the point of contact� the normal vector is just

�n � normalize�P t�u�C��

Ray�Triangle Intersection� Suppose that we wish to intersect a ray with a polyhedral object�
There are two standard approaches to this problem� The 	rst works only for convex polyhedra�
In this method� we represent a polyhedron as the intersection of a set of halfspaces� In this
case� we can easily modify the ��d line segment clipping algorithm presented in Lecture to
perform clipping against these halfspaces� We will leave this as an exercise� The other method
involves representing the polyhedron by a set of polygonal faces� and intersecting the ray with
these polygons� We will consider this approach here�

There are two tasks which are needed for ray�polygon intersection tests� The 	rst is to extract
the equation of the �in	nite� plane that supports the polygon� and determine where the ray
intersects this plane� The second step is to determine whether the intersection occurs within
the bounds of the actual polygon� This can be done in a ��step process� We will consider a
slightly di�erent method� which does this all in one step�

0

Q1

Q2
w2

Q

P
u

P+tu

w1

Figure ��� Ray�triangle intersection�

Let us consider the simplest case of a triangle� Let Q�� Q�� and Q� be the vertices of the
triangle in ��space� Any point Q� that lies on this triangle can be described by a convex
combination of these points

Q� � ��Q� ��Q� ��Q��

�

Lecture Notes CMSC ���

where �i �
 and
P

i �i � �� From the fact that the �i�s sum to �� we can set �� � �������
and do a little algebra to get

Q� � Q� ���Q� �Q�� ���Q� � Q���

where �i �
 and �� �� � �� Let

�w� � Q� � Q�� �w� � Q� � Q��

giving us the following
Q� � Q� �� �w� �� �w��

Recall that our ray is given by P t�u for t �
� We want to know whether there is a point Q�

of the above form that lies on this ray� To do this� we just substitute the parametric ray value
for Q� yielding

P t�u � Q� �� �w� ���w�

P � Q� � �t�u �� �w� �� �w��

Let �wP � P � Q�� This is an equation� where t� �� and �� are unknown �scalar� values� and
the other values are all ��element vectors� Hence this is a system of three equations with three
unknowns� We can write this as�

��u
����� �w�

����� �w�

� �� t
��
��

�
A �

�
�wP

�
�

To determine t� �� and ��� we need only solve this system of equations� Let M denote the
� � � matrix whose columns are ��u� �w� and �w�� We can do this by computing the inverse
matrixM�� and then we have �

� t
��
��

�
A � M��

�
�wP

�
�

There are a number of things that can happen at this point� First� it may be that the matrix
is singular �i�e�� its columns are not linearly independent� and no inverse exists� This happens
if �t is parallel to the plane containing the triangle� In this case we will report that there is no
intersection� Otherwise� we check the values of �� and ��� If either is negative then there is
no intersection and if �� �� � � then there is no intersection�

Normal Vector� In addition to computing the intersection of the ray with the object� it is also
desirable to compute the normal vector at the point of intersection� In the case of the triangle�
this can be done by computing the cross product

�n � normalize��Q� � Q�� � �Q� �Q��� � normalize��w� � �w���

But which direction should we take for the normal� �n or ��n� This depends on which side of
the triangle the ray arrives� The normal should be directed opposite to the directional ray of
the vector� Thus� if �n � �u �
� then negate �n�

�

Lecture Notes CMSC ���

Lecture ��� More Issues in Ray Tracing

�Tuesday� Nov ��� �����
Read� Chapter �� in Hill� �The material on Bezier surfaces is not covered in our text��

Issues in Ray Tracing� Today we consider a number of miscellaneous issues in the ray tracing
process�

Ray and Bezier Surface Intersection� Let us consider a more complex but more realistic ray
intersection problem� namely that of intersecting a ray with a Bezier surface� One possible
approach would be to derive an implicit representation of in	nite algebraic surface on which
the Bezier patch resides� and then determine whether the ray hits the portion of this in	nite
surface corresponding to the patch� This leads to a very complex algebraic task�

Instead� our approach is based on using circle�ray and triangle�ray intersection tests �which we
have already discussed� and the deCasteljau procedure� To do so� we will describe the process
for a Bezier curve� and then consider the generalization to surfaces� First� we could use the
convex hull property to provide a simple heuristic test for whether the ray misses the convex
hull of the control points� If so� it misses the curve� If not� then we�ll see later what to do�
This would require computing the convex hull and an intersection test for convex hulls� We
will apply a simpler test� by 	nding an enclosing circle for the curve� We do this by computing
an approximate center point C for the curve� This can be done� for example� as the centroid
of the control points or the midpoint between the 	rst and last control points� Given the point
C� we then compute the distance from each control point and C� Let dmax denote the largest
such distance� The circle with center C and radius dmax encloses all the control points� and
hence it encloses the convex hull of the control points� and hence it encloses the entire curve�
We test the ray for intersection with the circle� If it does not hit the circle� then we may safely
say that it does not hit the Bezier curve�

Figure ��� Subdivision�

If the ray does hit the circle� it still may miss the curve� Here we apply the deCasteljau
algorithm to subdivide the Bezier curve into two Bezier subcurves� �We will leave the general�
ization of the curve subdivision to surfaces as an exercise�� Then we apply the ray intersection
algorithm recursively to the two subcurves� If both return misses� then we miss� If either or
both returns a hit� then we take the closer of the two hits� We need some way to keep this
recursive procedure from looping in	nitely� To do so� we need some sort of stopping criterion�
Here are a few possibilities�

Fixed level decomposition� Fix an integer k� and decompose the curve to a depth of k
levels �resulting in �k� subcurves in all� This is certainly simple� but not a very e�cient
approach� It does not consider the shape of the curve or its distance from the viewer�

�

Lecture Notes CMSC ���

Decompose until �at� For each subcurve� we can compute some function that measures how
�at� that is� close to linear� the curve is� For example� this might be done by considering
the ratio of the length of the line segment between the 	rst and last control points and
distance of the furthest control point from this line� At this point we reduce the ray
intersection to line segment intersection problem�

This can be generalized to surfaces� When a surface patch is su�ciently �at� we can
approximate by two triangles� Although this works reasonably well for curves� not that
we may have problems with surfaces because two adjacent patches with di�erent degrees
of curvature may be subdivided to a di�erent levels� As a result� we may produce a
small �crack� between these two surfaces� because they no longer share the same control
points along their common boundary� These cracks may be small� but they can be quite
noticeable visibly�

Decompose to pixel width� We continue to subdivide the curve until each subcurve� when
projected back to the viewing window� overlaps a region of less than one pixel� Clearly it
is unnecessary to continue to subdivide such a curve� This solves the crack problem �since
cracks are smaller than a pixel� but may produce an unnecessarily high subdivision for
nearly �at curves� Also notice that this the notion of back projection is easy to implement
for rays emanating from the eye� but this is much harder to determine for re�ection or
refracted rays�

The most reasonable approach is probably a hybrid between the latter two�

Procedural Textures� We can apply texture mapping in ray tracing just as we did in OpenGL�s
rendering model� Given the intersection of the ray with an object� we need to map this intersec�
tion point to some sort of ��dimensional parameterization �u� v�� From this parameterization�
we can then apply the inverse wrapping function to map this point into texture coordinates
�u� v��

In ray tracing there is another type of texture� which is quite easy to implement� The idea
is to create a function f�x� y� z� which maps a point in ��space to a color� This is called a
procedural texturing�

We usually think of textures as ��dimensional �wallpapers� that are wrapped around objects�
The notion here is di�erent� We imagine that the texture covers all of ��space and that the
object is cut out of this in	nite texture� This is actually quite realistic in some cases� For
example� a wood grain texture arises from the cylindrical patterns of light and dark wood that
results from the trees varying rates of growth between the seasons� When you cut a board
of wood� the pattern on the surface is the intersection of a single plane and this cylindrical
��dimensional texture� Here are some examples�

Checker� Let C� and C� be two RGB colors� Imagine that we tile all of three dimensional
space with a collection of unit cubes each of side length s and of alternating colors C� and
C�� This might be easiest to see in the ��dimensional case 	rst� Given an x�coordinate�
we divide it by s and take its �oor� If the resulting number is even then we assign the
color C� and if odd we assign C��

checker�x� � �floor�x�s� � �� �� � � C�� C����

Note that floor��� as used here� is not a built�in C function� �There is one but it
works for �oats� not integers�� Note that this is di�erent from casting function int���
Whereas floor�� always rounds down to the next smaller value� int�� rounds to the
next smaller absolute value�

To generalize this to three space� we simply apply this idea separately to each coordinate
and sum the results�

�

Lecture Notes CMSC ���

checker�P� � ��floor�P�x�s��floor�P�y�s��floor�P�z�s����� �� � � C�� C����

Note that if we intersect an axis�orthogonal plane with the resulting ��dimensional checker
pattern� then the result will be a ��dimensional checker� If we intersect it with a non�axis
aligned object �like a sphere� then the result takes on a decidedly di�erent appearance�

Figure ��� ��d checkerboard and gradient textures�

Gradient� A gradient is a texture that alternates smoothly between two colors C� and C��
relative to some directional vector �v and an origin point Q� The idea is that for each
point P � consider the relative length of the projection of P � Q onto �v

� �
��P � Q� � �v�
��v � �v� �

We use the value of � to blend smoothly between C� and C�� In particular� the color of
point P is the convex combination�

gradient�P � � ��� ��C� �C��

where � � �� � cos�������� Observe that as the projection of P onto �v moves along the
length of the vector� � increases from
 to � to �� and the cosine term varies from � to
�� to �� The value of � varies from
 to � to
� and hence the 	nal color varies from C�

to C� and back to C�� Thus we get a smooth blend of these two colors� The 	gure above
shows an example of applying a gradient pattern to a sphere� where the center point Q is
the center of the sphere� �v is vertical� and the length of �v is half the radius of the sphere�

When combined with a random number generator� procedural textures can produce quite
complex natural textures� such as wood grains and marble textures� See the book for further
examples�

Ray Generation� Let us return to the basic issue of how to generate rays� Let us assume that we
are given essentially the same information that we use in gluLookAt�� and gluPerspective���
In particular� let E denote the eye point� C denote the center point� and �up denote the up
vector for gluLookAt��� Let 	 denote the y�	eld of view� Let nRows and nCols denote the
number of rows and columns in the 	nal image� and let � � nCols�nRows denote the window�s
aspect ratio� In gluPerspective we also need to give the distance to the near and far clipping
planes� But for ray tracing these are not really needed� so to make our life simple� let us
assume that the window is � unit in front of the eye� �The distance is not important� since the
aspect ratio and the 	eld�of�view really determine everything up to a scale factor��

The height and width of view window relative to its center point are

h � tan�	��� w � h��

�

Lecture Notes CMSC ���

So� the window extends from �h to h in height and �w to w in width� Now� we proceed to
compute the viewing coordinate frame as we did in Lecture �
� The origin is E� the location
of the eye�

�ez � �normalize�C � E��

�ex � normalize� �up� �ez��

�ey � �ez � �ex�

We will follow the �somewhat strange� convention used in �bmp 	les and assume that rows are
indexed from bottom to top and columns are indexed from left to right� Every point on the
view window has �ez coordinate of ��� Now� suppose that we want to shoot a ray for row r
and column c� where
 � r
 nRows and
 � c
 nCols� Observe that r�nRows is in the
range from
 to �� Multiplying by �h and subtracting h maps us linearly to the interval �h
to h� as desired� Applying this to row and column indices we have

ur � �h
r

nRows
� h�

uc � �w
c

nCols
� w�

The location of the corresponding point on the viewing window is

P �r� c� � E uc�ex ur�ey � �ez�

Thus� the desired ray R�r� c� has the origin E and the directional vector

�v�r� c� � normalize�P �r� c�� E��

Lecture ��� Scan Conversion

�Tuesday� Nov ��� �����
Read� Chapter �
 in Hill�

Scan Conversion� We turn now to a number of miscellaneous issues involved in the implementation
of computer graphics systems� In our top�down approach we have concentrated so far on the
high�level view of computer graphics� In the next few lectures we will consider how these
things are implemented� In particular� we consider the question of how to map ��dimensional
geometric objects �as might result from projection� to a set of pixels to be colored� This
process is called scan conversion or rasterization� We begin by discussing the simplest of all
rasterization problems� drawing a single line segment�

Let us think of our raster display as an integer grid� in which each pixel is a circle of radius ���
centered at each point of the grid� We wish to illuminate a set of pixels that lie on or close to
the line� In particular� we wish to draw a line segment from q � �qx� qy� to r � �rx� ry�� where
the coordinates are integer grid points �typically by a process of rounding�� Let us assume
further that the slope of the line is between
 and �� and that qx
 rx� This may seem very
restrictive� but it is not di�cult to map any line drawing problem to satisfy these conditions�
For example� if the absolute value of the slope is greater than �� then we interchange the roles of
x and y� thus resulting in a line with a reciprocal slope� If the slope is negative� the algorithm
is very easy to modify �by decrementing rather than incrementing�� Finally� by swapping the
endpoints we can always draw from left to right�

Lecture Notes CMSC ���

Bresenham�s Algorithm� We will discuss an algorithm� which is called Bresenham�s algorithm�
It is one of the oldest algorithms known in the 	eld of computer graphics� It is also an
excellent example of how one can squeeze every but of e�ciency out an algorithm� We begin
by considering an implicit representation of the line equation� �This is used only for deriving
the algorithm� and is not computed explicitly by the algorithm��

f�x� y� � ax by c �
�

If we let dx � rx � qx� dy � ry � qy� it is easy to see �by substitution� that a � dy� b � �dx�
and c � ��qxry � rxqy�� Observe that all of these coe�cients are all integers� Also observe
that f�x� y� �
 for points that lie below the line and f�x� y�

 for points above the line� For
reasons that will become apparent later� let us use an equivalent representation by multiplying
by �

f�x� y� � �ax �by �c �
�

Here is the intuition behind Bresenham�s algorithm� For each integer x value� we wish to
determine which integer y value is closest to the line� Suppose that we have just 	nished
drawing a pixel �px� py� and we are interested in 	guring out which pixel to draw next� Since
the slope is between
 and �� it follows that the next pixel to be drawn will either be the pixel
to our East �E � �px �� py�� or the pixel to our NorthEast �NE � �px �� py ���� Let q
denote the exact y�value �a real number� of the line at x � px �� Let m � py ��� denote the
y�value midway between E and NE � If q
 m then we want to select E next� and otherwise
we want to select NE � IF q � m then we can pick either� say E � See the 	gure�

p

p

p

x pp +1x +2x

+1y

y

m
q

f(x,y) > 0

f(x,y) < 0
NE

E

Figure ��� Bresenham�s midpoint algorithm�

To determine which one to pick� we have a decision variable D which will be the value of f at
the midpoint� Thus

D � f�px �� py ������

� �a�px �� �b

�
py

�

�

�
 �c

� �apx �bpy ��a b �c��

If D �
 then m is below the line� and so the NE pixel is closer to the line� On the other
hand� if D �
 then m is above the line� so the E pixel is closer to the line� �Note� We can
see now why we doubled f�x� y�� This makes D an integer quantity��

The good news is that D is an integer quantity� The bad news is that it takes at least at least
two multiplications and two additions to compute D �even assuming that we precompute the
part of the expression that does not change�� One of the clever tricks behind Bresenham�s
algorithm is to compute D incrementally� Suppose we know the current D value� and we want
to determine its next value� The next D value depends on the action we take at this stage�

�

Lecture Notes CMSC ���

We go to E next� Then the next midpoint will have coordinates �px �� py ������ and
hence the new D value will be

Dnew � f�px �� py ������

� �a�px �� �b

�
py

�

�

�
 �c

� �apx �bpy ��a b �c�

� �apx �bpy ��a b �c� �a

� D �a � D �dy�

Thus� the new value of D will just be the current value plus �dy�

We go to NE next� Then the next midpoint will have coordinates �px �� py � ������
and hence the new D value will be

Dnew � f�px �� py � ������

� �a�px �� �b

�
py

�

�

�
 �c

� �apx �bpy ��a �b �c�

� �apx �bpy ��a b �c� ��a �b�

� D ��a b� � D ��dy � dx��

Thus the new value of D will just be the current value plus ��dy � dx��

Note that in either case we need perform only one addition �assuming we precompute the
values �dy and ��dy � dx�� So the inner loop of the algorithm is quite e�cient�

The only thing that remains is to compute the initial value of D� Since we start at �qx� qy� the
initial midpoint is at �qx �� qy ���� so the initial value of D is

Dinit � f�qx �� qy ����

� �a�qx �� �b

�
qy

�

�

�
 �c

� ��aqx �bqy �c� ��a b�

�
 �a b Since �qx� qy� is on line

� �dy � dx�

We can now give the complete algorithm� Recall our assumptions that qx
 rx and the slope
lies between
 and �� Notice that the quantities �dy and ��dy � dx� appearing in the loop can
be precomputed� so each step involves only a comparison and a couple of additions of integer
quantities�

Bresenham�s midpoint algorithm

void bresenham�IntPoint q� IntPoint r� �

int dx� dy� D� x� y�

dx � r�x � q�x� �� line width and height

dy � r�y � q�y�

D � ��dy � dx� �� initial decision value

y � q�y� �� start at �q�x�q�y�

for �x � q�x� x �� r�x� x��� �

writePixel�x� y��

�
�

Lecture Notes CMSC ���

if �D �� �� D �� ��dy� �� below midpoint � go to E

else � �� above midpoint � go to NE

D �� ���dy � dx�� y���

�

�

�

Bresenham�s algorithm can be modi	ed for drawing other sorts of curves� For example� there
is a Bresenham�like algorithm for drawing circular arcs� The generalization of Bresenham�s
algorithm is called the midpoint algorithm� because of its use of the midpoint between two
pixels as the basic discriminator�

Filling Regions� In most instances we do not want to draw just a single curve� and instead want
to 	ll a region� There are two common methods of de	ning the region to be 	lled� One is
polygon�based� in which the vertices of a polygon are given� We will discuss this later� The
other is pixel based� In this case� a boundary region is de	ned by a set of pixels� and the task
is to 	ll everything inside the region� We will discuss this latter type of 	lling for now� because
it brings up some interesting issues�

The intuitive idea that we have is that we would like to think of a set of pixels as de	ning the
boundary of some region� just as a closed curve does in the plane� Such a set of pixels should
be connected� and like a curve� they should split the in	nite grid into two parts� an interior
and an exterior� De	ne the ��neighbors of any pixel to be the pixels immediately to the north�
south� east� and west of this pixel� De	ne the ��neighbors to be the union of the ��neighbors
and the � closest diagonal pixels� There are two natural ways to de	ne the notion of being
connected� depending on which notion of neighbors is used�

Figure ��� ��connected �left� and ��connected �right� sets of pixels�

�connected� A set is ��connected if for any two pixels in the set� there is path from one to
the other� lying entirely in the set and moving from one pixel to one of its ��neighbors�

��connected� A set is ��connected if for any two pixels in the set� there is path from one to
the other� lying entirely in the set and moving from one pixel to one of its ��neighbors�

Observe that a ��connected set is ��connected� but not vice versa� Recall from the Jordan
curve theorem that a closed curve in the plane subdivides the plane into two connected regions�
and interior and an exterior� We have not de	ned what we mean by a closed curve in this
context� but even without this there are some problems� Observe that if a boundary curve is
��connected� then it is generally not true that it separates the in	nite grid into two ��connected
regions� since �as can be seen in the 	gure� both interior and exterior can be joined to each
other by a ��connected path� There is an interesting way to 	x this problem� In particular� if
we require that the boundary curve be ��connected� then we require that the region it de	ne

�
�

Lecture Notes CMSC ���

be ��connected� Similarly� if we require that the boundary be ��connected� it is common to
assume that the region it de	nes be ��connected�

Recursive Flood Filling� Irrespective of how we de	ne connectivity� the algorithmic question we
want to consider is how to 	ll a region� Suppose that we are given a starting pixel p � �px� py��
We wish to visit all pixels in the same connected component �using say� ��connectivity�� and
assign them all the same color� We will assume that all of these pixels initially share some
common background color� and we will give them a new region color� The idea is to walk
around� as whenever we see a ��neighbor with the background color we assign it color the
region color� The problem is that we may go down dead�ends and may need to backtrack� To
handle the backtracking we can keep a stack of un	nished pixels� One way to implement this
stack is to use recursion� The method is called �ood �lling� The resulting procedure is simple
to write down� but it is not necessarily the most e�cient way to solve the problem� See the
book for further consideration of this problem�

Recursive Flood�Fill Algorithm ���connected�

void floodFill�intPoint p� �

if �getPixel�p�x� p�y� �� backgroundColor� �

setPixel�p�x� p�y� regionColor��

floodFill�p�x � �� p�y�� �� apply to ��neighbors

floodFill�p�x � �� p�y��

floodFill�p�x� p�y � ���

floodFill�p�x� p�y � ���

�

�

Lecture ��� Scan Conversion for Polygons

�Thursday� Nov ��� �����
Read� Chapter �
 in Hill�

Filling Polygons� One of the fundamental low�level operations that is critical to the e�ciency of
graphics systems is that of rasterizing polygons� We will consider the case where the polygon
is 	lled with a single solid color� but polygon 	lling typically involves producing additional
shading or mapping complex textures as well� However� the basic task of determining which
pixels are part of the 	lled region is fundamental to these other tasks�

Tie breaking rules� The task of polygon 	lling is one that is really much trickier than what one
might imagine at 	rst� It is very important� for example� that patches that share a common
edge should be drawn in such a way that there are no �gaps� between the adjacent regions�
Overlap �writing the same pixel twice� also represents a danger� since there are some pixel
writing modes �e�g� using an accumulation bu�er� where writing a pixel twice results in a
di�erent color�

Our text suggests the following criteria for determining exactly which pixels to draw as part
of the polygon� Brie�y� the rule can be called ILB for interior�left�bottom� since this describes
which pixels the algorithm considers to be �part� of the 	lled polygon� A pixel is drawn if
it is either in the interior of the polygon� along a left�side edge� or along a bottom�side edge�
Unfortunately� it is rather hard to describe the exact conditions under which the rule applies�
Instead� I prefer to use a slightly di�erent rule� It is called LRsU for �Look Right and slightly
Up��

�
�

Lecture Notes CMSC ���

Here is the idea� Suppose you have a pixel and you want to determine whether it is part of
the 	lled polygon or not� Consider a point that in	nitessimally to the right of the point� but
not directly right since there might be a horizontal edge there� Instead look to the right and
very slightly up� If this point is in the interior of the polygon then consider the pixel to be
inside and hence 	lled� and if this point is exterior to the polygon� consider it to not be 	lled�
An example of an application of this rule is shown in the 	gure below�

Figure ��� The LRsU Rule�

You might ask how this notion of an �in	nitessimal� is computed� It is important to note
that we never actually compute in	nitessimal values �say� using �oating point�� Instead� the
algorithm simply makes its discrete decisions as if an in	nitessimal perturbation was applied�

Scan Line Algorithm� The standard algorithm for 	lling polygons is called the scan�line algo�
rithm� It is one example of general paradigm of geometric algorithms� which are usually called
sweep�line algorithms in computational geometry�

It works by imagining a scanning line that scans row�by�row from the bottom of the polygon
to the top� and working from left to right along each row� When the scan line 	rst comes to
an edge of the polygon� it starts drawing pixels� When it next comes to an edge it stops� It
simply repeats this process until the entire polygon has been scanned out�

However� this simple idea hides some nasty special cases that need to be handled carefully� For
example� what happens if the scan line hits vertex� Our text suggests a fairly elegant way to
handle the various special cases� by choosing to consider or ignore certain edges and vertices�

Horizontal edges� Are ignored entirely� We will see that this has a magical way of working
out�

Edge coincides with pixel� If the interior of a nonhorizontal edge coincides exactly with a
pixel� then we invert the drawing mode at this pixel� That is� if we were not drawing
then we start with this pixel� and if we were drawing then we stop drawing at this pixel
�i�e� it is not drawn��

Vertex coincides with pixel� We treat each nonhorizontal edge as though it is open on top
and closed on the bottom� That is� the topmost pixel does not belong to the edge� but
the bottommost pixel does� Here are various cases that we might encounter�

One edge up and one edge down� In this case because this vertex belongs to exactly
one of the edges� the drawing mode is inverted at this pixel�

Both edges down� In this case because this pixel does not belong to either edge� the
drawing mode is una�ected�

�
�

Lecture Notes CMSC ���

Both edges up� In this case because this pixel belongs to both edges� the drawing mode
is inverted twice� and as a result it does not change�

One edge horizontal� Because we have chosen to ignore horizontal edges entirely� the
mode will change only if the other vertex is a bottom vertex�

The claim is that these rules are exactly what you need to satisfy the LRsU rules for drawing�
In particular� notice that we never introduce any in	nitessimal values� An example is shown
in the 	gure below�

Figure ��� The Scan�Line Algorithm�

Implementation� There are a couple aspects to the e�cient implementation of the scan�line algo�
rithm�

Which edge do we hit next� We need a data structure which tells us which line the scan
line hits next� This will be done by a structure called the active edge table �or AET��

When should edges be added to the AET� We need to know at the start of each new
scan�line which edges have ceased to be active� and which new edges have started to be
active� This we do with a structure called the edge table�

At what pixel does the scan line hit an edge� For each edge in the AET� we keep track
of its x�coordinate along the current scan line� However� this quantity is a �oating point
number in general� Can we update this number using strictly integer arithmetic�

The book describes the last component of the algorithm in some detail �especially how to
avoid �oating point arithmetic� but we will not worry about this for now� The main thing
that we need to know for each edge is what is its current x�coordinate along the scan line� The
book observes that as we increment the y�coordinate in the scan line by �� the corresponding
x�coordinate of each line changes by ��m� where m is the slope of the line� To make it easy
to update the x�coordinates of each edge� we will store both the current x coordinate� and the
value ��m for each edge that is currently active� Let us concentrate on the 	rst two issues�
since these issues are common to any sort of scan�line �or sweep�line� algorithm�

Edge table� First we consider the edge table� �In general sweep�line algorithms we need a priority
queue which tells us what events are coming up�� Because the main events for the scan line
algorithm involve the introduction of new edges� the edge table contains a list edges sorted
according to their bottom y�coordinates� �Recall that horizontal edges are simply ignored at
not stored in the table�� Each entry of the edge table �and the active edge table� has the
following structure�

struct E�Node �

int y�max �� y�coordinate of edge�s top vertex

double x�curr �� x�coordinate of edge�s bottom vertex

�
�

Lecture Notes CMSC ���

double recip�slope �� reciprocal of edges slope �dx�dy�

E�Node �next �� next entry in edge table

�

The x curr entry initially contains the x�coordinate of the bottom vertex of the edge� We will
see later that its value is changed when the edge becomes active� The entries in the table are
bucket sorted by ymin� the y�coordinate of the edge�s bottom vertex� We have an array ET

that contains one entry for each scan line� ET�i� points to a linked list of E Nodes for which
ymin � i�

Initially all nonhorizontal edges are inserted into the edge table� As the scan line visits row i�
the contents of ET�i� are inserted in the active edge table�

Active Edge Table� The active edge table �AET� is a linked list that contains the edges that are
currently intersected by the scan line� They are stored in ascending order according to the
x�coordinate of the intersection of the edge with the current scan line� �Notice that if we
assume that edges of the polygon are not self�intersecting� we do not need to sort this list
except when new edges are inserted��

Each entry has exactly the same E Node structure as the edge table� Indeed� when an edge
becomes active� the entry is simply copied from the ET and inserted in the appropriate place in
the AET� When the scan�line reaches the top of an edge� it is deleted from the AET� Otherwise�
the scan�line algorithm simply moves from one AET entry to the next� inverting the drawing
mode between each consecutive pair� Note the the AET should always have an even number
of entries�

Scan�line algorithm� Here is the scan�line algorithm�

��� Bucket sort all nonhorizontal edges into the edge table ET according to their bottom
y�coordinate�

��� Set y to the smallest y�coordinate in the edge table�

��� Initialize the AET to empty�

��� Repeat until the AET is empty�

�a� Move from ET bucket y to AET those edges for which y min � y� keeping the AET
sorted by x�coordinate�

�b� Remove from the AET those entries for which y max � y�

�c� Visit the AET in pairs� 	lling in the pixels in between�

�d� Increment y by ��

�e� For each edge in the AET� update x curr by the reciprocal slope�

Lecture ��� Hidden Surface Removal

�Tuesday� Dec �� �����
Read� Chapter �� in Hill�

Hidden�Surface Removal� We continue our discussion of implementation issues in computer
graphics by talking about hidden surface removal� We are given a collection of objects �repre�
sented� say� by a set of polygons� in ��space� and a viewing situation� and we want to render
only the visible surfaces� Each polygon face is assumed to be �at �although extensions to
hidden�surface elimination of curved surfaces is an important problem� and opaque� We may

�
�

Lecture Notes CMSC ���

assume that each polygon is represented by a cyclic listing of the �x� y� z� coordinates of their
vertices� so that from the �front� the vertices are enumerated in counterclockwise order�

One question that arises right away is what do we want as the output of a hidden�surface
procedure� There are generally two options�

Object precision� The algorithm computes its results to machine precision �the precision
used to represent object coordinates�� The resulting image may be enlarged many times
without signi	cant loss of accuracy� The output is a set of visible object faces� and the
portions of faces that are only partially visible�

Image precision� The algorithm computes its results to the precision of a pixel of the image�
Thus� once the image is generated� any attempt to enlarge some portion of the image will
result in reduced resolution�

Although image precision approaches have the obvious drawback that they cannot be enlarged
without loss of resolution� the fastest and simplest algorithms usually operate by this approach�

The hidden�surface elimination problem for object precision is interesting from the perspective
of algorithm design� because it is an example of a problem that is rather hard to solve in the
worst�case� and yet there exists a number of fast algorithms that work well in practice� As an
example of this� consider a patch�work of n thin horizontal strips in front of n thin vertical
strips� If we wanted to output the set of visible polygons� observe that the complexity of
the projected image with hidden�surfaces removed is O�n��� Hence� it is impossible to beat
O�n�� in the worst case� However� almost no one in graphics uses worst�case complexity as
a measure of how good an algorithm is� because these worst�case scenarios do not happen
often in practice� �By the way there is an �optimal� O�n�� algorithm� which is never used in
practice��

n strips

n strips

Figure �� Worst�case example for hidden�surface elimination�

Back�face culling� This is not a general hidden surface removal algorithm� but rather just a heuris�
tic for eliminating obviously invisible faces from consideration� It can eliminate roughly half
of the faces from consideration� Assuming that the viewer is never inside any of the objects of
the scene� then the back sides of objects are never visible to the viewer� and hence they can
be eliminated from consideration� For each polygonal face� we assume an outward pointing
normal can be computed �e�g� by the area method described earlier this semester�� If this
normal is directed away from the viewpoint� that is� if its dot product with a vector directed
towards the viewer is negative� then the face can be immediately discarded from consideration�
On average this quick test can eliminate about one half of the faces from further consideration�

Depth�Sort Algorithm� A fairly simple hidden�surface algorithm is based on the principle of
painting objects from back to front� so that more distant polygons are overwritten by closer
polygons� This is called the depth�sort algorithm� This suggests the following algorithm�

�
�

Lecture Notes CMSC ���

Eye

Figure �
� Back�face culling�

sort all the polygons according to increasing distance from the viewpoint� and then scan
convert them in reverse order �back to front�� This is sometimes called the painter�s algorithm
because it mimics the way that oil painters usually work �painting the background before
the foreground�� The painting process involves setting pixels� so the algorithm is an image
precision algorithm�

There is a very quick�and�dirty technique for hidden�surface elimination� which unfortunately
does not generally work� Compute a representative point on each polygon �e�g� the centroid
or the furthest point to the viewer�� Sort the objects by decreasing order of distance from the
viewer to the representative point �or using the pseudodepth which we discussed in discussing
perspective� and draw the polygons in this order� Unfortunately� just because the representa�
tive points are ordered� it does not imply that the entire polygons are ordered� Worse yet� it
may be impossible to order polygons so that this type of algorithm will work� The following
	gure shows such an example� in which the polygons overlap one another cyclically�

Figure ��� Hard cases to depth�sort�

In these cases we may need to cut one or more of the polygons into smaller polygons so that
the depth order can be uniquely assigned� Also observe that if two polygons do not overlap in
x� y space� then it does not matter what order they are drawn in�

Here is a snapshot of one step of the depth�sort algorithm� Given any object� de	ne its z�extents
to be an interval along the z�axis de	ned by the object�s minimumand maximum z�coordinates�
We begin by sorting the polygons by depth using furthest point as the representative point� as
described above� Let�s consider the polygon P that is currently at the end of the list� Consider
all polygons Q whose z�extents overlaps P �s� This can be done by walking towards the head of
the list until 	nding the 	rst polygon whose maximum z�coordinate is less than P �s minimum
z�coordinate� Before drawing P we apply the following tests to each of these polygons Q� If
any answers is �yes�� then we can safely draw P before Q�

��� Are the x�extents of P and Q disjoint�

�
�

Lecture Notes CMSC ���

��� Are the y�extents of P and Q disjoint�

��� Consider the plane containing Q� Does P lie entirely on the opposite side of this plane
from the viewer�

��� Consider the plane containing P � Does Q lie entirely on the same side of this plane from
the viewer�

��� Are the projections of the polygons onto the view window disjoint�

In the cases of ��� and ���� the order of drawing is arbitrary� In cases ��� and ��� observe that
if there is any plane with the property that P lies to one side and Q and the viewer lie to the
other side� then P may be drawn before Q� The plane containing P and the plane containing
Q are just two convenient planes to test� Observe that tests ��� and ��� are very fast� ��� and
��� are pretty fast� and that ��� can be pretty slow� especially if the polygons are nonconvex�

If all tests fail� then are only hope to resolve the situation is to split one or both of the polygons�
Before doing this� we 	rst see whether this can be avoided by putting Q at the end of the list�
and then applying the process on Q� To avoid going into in	nite loops� we mark each polygon
once it is moved to the back of the list� Once marked� a polygon is never moved to the back
again� If a marked polygon fails all the tests� then we need to split� To do this� we use P �s
plane like a knife to split Q� We then take the resulting pieces of Q� compute the furthest
point for each and put them back into the depth sorted list�

In theory this partitioning could generate O�n�� individual polygons� but in practice the num�
ber of polygons is much smaller� The depth�sort algorithm needs no storage other than the
frame bu�er and a linked list for storing the polygons �and their fragments�� However� it
su�ers from the de	ciency that each pixel is written as many times as there are overlapping
polygons�

Depth�bu
er Algorithm� The depth�bu�er algorithm is one of the simplest and fastest hidden�
surface algorithms� Its main drawbacks are that it requires a lot of memory� and that it
only produces a result that is accurate to pixel resolution and the resolution of the depth
bu�er� Thus the result cannot be scaled easily and edges appear jagged �unless some e�ort is
made to remove these e�ects called �aliasing��� It is also called the z�bu�er algorithm� This
algorithm assumes that for each pixel we store two pieces of information� ��� the color of the
pixel �as usual�� and ��� the depth of the object that gave rise to this color� This is called
the depth�bu�er �or z�bu�er� since z is the axis used to store depth information�� Initially the
depth�bu�er values are set to the maximum depth value�

Suppose that we have a k�bit depth bu�er� implying that we can store integer depths ranging
from
 to D � �k � �� After applying the perspective�with�depth transformation� we know
that all depth values have been scaled to the range ���� ��� We scale the depth value to the
range of the depth�bu�er and convert this to an integer� e�g� b�z �����D�c� If this depth is
less than or equal to the depth at this point of the bu�er� then we store its RGB value in the
color bu�er� Otherwise we do nothing�

This algorithm is favored for hardware implementations because it is so simple and essentially
reuses the same algorithms needed for basic scan conversion�

Scan Conversion for the Depth�Bu
er Algorithm� Consider the process of scan�converting a
triangle shown in the 	gure below using a depth�bu�er�

Let P�� P�� and P� be the vertices of the triangle after the perspective�plus�depth transforma�
tion has been applied� and the points have been scaled to the screen size� Let Pi � �xi� yi� zi�
be the coordinates of each vertex� where �xi� yi� are the 	nal screen coordinates and zi is the
depth of this point�

�

Lecture Notes CMSC ���

scan line

P0

Pa
P

P1

Pb

P2

ys

x

Figure ��� Depth�bu�er scan conversion�

Scan�conversion takes place by scanning along each row of pixels that this triangle overlaps�
Based on the y�coordinates of the current scan line ys and the y�coordinates of the vertices of
the triangle� we can interpolate the depth of at the endpoints Pa and Pb of the scan�line� For
example� given the con	guration in the 	gure� we have�

�a �
ys � y�
y� � y�

is the ratio into which the scan line subdivides the edge P�P�� The depth of point Pa� can be
interpolated by the following a�ne combination

za � ��� �a�z� �az��

�Is this really an accurate interpolation of the depth information� Remember that the projec�
tion transformation is nonlinear� but the result may surprise you� We�ll leave this question as
an exercise�� We can derive a similar expression for zb�

Then as we scan along the scan line� for each value of y we have

� �
x� xa
xb � xa

�

and the depth of the scanned point is just the a�ne combination

z � ��� ��za �zb�

It is more e�cient �from the perspective of the number of arithmetic operations� to do this
by computing za accurately� and then adding a small incremental value as we move to each
successive pixel on the line� The scan line traverses xb � xa pixels� and over this range� the
depth values change over the range zb � za� Thus� the change in depth per pixel is

$z �
zb � za
xb � xa

�

Starting with za� we add the value $z to the depth value of each successive pixel as we scan
across the row� An analogous trick may be used to interpolate the depth values along the left
and right edges�

Lecture ��� Light and Color

�Thursday� Dec 	� �����
Read� Chapter �� in Hill� Our book does not discuss Gamma correction�

��

Lecture Notes CMSC ���

Achromatic Light and Gamma Correction� Light and its perception are important to under�
stand for anyone interested in computer graphics� Before considering color� we begin by con�
sidering some issues in the perception of light intensity and the generation of light on most
graphics devices� Let us consider color�free� or achromatic light� that is gray�scale light� It is
characterized by one attribute� intensity which is a measure of energy� or luminance� which is
the intensity that we perceive� Intensity a�ects brightness� and hence low intensities tend to
black and high intensities tend to white� Let us assume for now that each intensity value is
speci	ed as a number from
 to �� where
 is black and � is white�

You would think that intensity and luminance are directly proportional to each other� Twice
the intensity is perceived as being twice as bright� However� the human perception of luminance
is nonlinear� For example� suppose we want to generate �
 di�erent intensities� producing a
uniform continuous variation from black to white on a typical CRT display� It would seem
logical to use equally spaced intensities�
�
�
���
��� � � ��
�� However our eye does not perceive
these intensities as varying uniformly� The reason is that the eye is sensitive to ratios of
intensities� rather than absolute di�erences� Thus�
�� appears to be twice as bright as
���
but
�� only appears to be �
% brighter than
��� Therefore� to achieve perceptual uniformity�
intensities should be chosen on a logarithmic� rather than a linear scale�

To make things more complicated� there is not a linear relation between the voltage supplied
to the electron gun of the CRT and the intensity of the resulting phosphor� The relationship
between voltage and brightness of the phosphors is more closely approximated by�

I � V � �

where I denotes the intensity of the pixel and V denotes the voltage on the signal �which
is proportional to the RGB values you store in your frame bu�er�� and � is a constant that
depends on physical properties of the display device �which ranges typically from ��� to ��� for
CRT monitors�� The term gamma refers to the nonlinearity of the transfer function� Gamma
correction is the process of altering the pixel values the inverse of this function� In a system
that does not do gamma correction� the problem is that low voltages produce unnaturally
intensities compared to high voltages� The result is that dark colors appear unnaturally dark�
In order to correct this e�ect� modern monitors provide the capability of gamma correction�
In order to achieve a desired intensity I� we instead aim to produce a corrected intensity�

I� � I��� �

Thus� when the gamma e�ect is taken into account� we will get the desired intensity�

Many high�end graphics displays �like SGI�s� provide a form of automatic gamma correction�
In most PC�s the gamma can be adjusted manually� However� even with gamma correction�
do not be surprised if the same RGB values will produce exactly the same colors on di�erent
systems� As an experiment� run the xv program on your favorite image� Open the color editor
window and try entering di�erent values of gamma to see what the e�ect is on the 	nal image�

Light and Color� Light as we perceive it is electromagnetic radiation from a narrow band of the
complete spectrum of electromagnetic radiation called the visible spectrum� The physical
nature of light has elements that are like particle �when we discuss photons� and as a wave�
Recall that wave can be described either in terms of its frequency� measured say in cycles per
second� or the inverse quantity of wavelength� The electro�magnetic spectrum ranges from very
low frequency �high wavelength� radio waves �greater than �
 centimeter in wavelength� to
microwaves� infrared� visible light� ultraviolet and x�rays and high frequency �low wavelength�
gamma rays �less than
�
� nm in wavelength�� Visible light lies in the range of wavelengths
from around �

 to �

 nm� Recall that nm denotes a nanometer which is �
�
 of a centimeter�

���

Lecture Notes CMSC ���

Physically� the light energy that we perceive as color can be described in terms of a function
of wavelength �� called the spectral distribution function or simply spectral function� f���� As
we walk along the wavelength axis �from short to long wavelengths�� the associated colors that
we perceive varying along the colors of the rainbow from violet to blue� green� yellow� orange
and red�

The Eye and Color Perception� Light and color are complicated in computer graphics for a
number of reasons� The 	rst is that the physics of light is very complex� Secondly� our
perception of light is a function of our optical systems� which perform numerous unconscious
corrections and modi	cations to the light we see�

The retina of the eye is a light sensitive membrane� which contains two types of light�sensitive
receptors� rods and cones� Cones are color sensitive� There are three di�erent types� which
are selectively more sensitive to red� green� or blue light� There are from � to � million cones
concentrated in the fovea� which corresponds to the center of your view� The tristimulus theory
states that we perceive color as a mixture of these three colors�

Blue cones� peak response around ��
 nm with about �% of light absorbed by the cone�

Green cones� peak response around ��� nm with about �
% of light absorbed by the cone�

Red cones� peak response around ��
 nm� with about �% of light absorbed by the cone�

The di�erent absorption rates comes from the fact that we have far fewer blue sensitive cones
in the fovea as compared with red and green� Rods in contrast occur in lower density in the
fovea� and do not distinguish color� However they are sensitive to low light and motion� and
hence serve a function for vision at night�

blue

400

green red

480 560 680
Wavelength (nm)

0.1

F
ra

ct
io

n
of

 li
gh

t a
bs

or
be

d
by

 c
on

e

0.2

Figure ��� Spectral response curves for cones �adapted from Foley� vanDam� Feiner and Hughes��

It is possible to produce light within a very narrow band of wavelengths using lasers� Note that
because of our limited ability to sense light of di�erent colors� there are many di�erent spectra
that appear to us to be the same color� These are called metamers� Thus� spectrum and color
are not in ��� correspondence� Most of the light we see is a mixture of many wavelengths
combined at various strengths� For example� shades of gray varying from white to black all
correspond to fairly �at spectral functions�

���

Lecture Notes CMSC ���

Describing Color� Throughout this semester we have been very lax about de	ning color carefully�
We just spoke of RGB values as if that were enough� However� we never indicated what
RGB means� independently from the notion that they are the colors of the phosphors on
your display� How would you go about describing color precisely� so that� say� you could
unambiguously indicate exactly what shade you wanted in a manner that is independent of
the display device� Obviously you could give the spectral function� but that would be overkill
�since many spectra correspond to the same color� and it is not clear how you would 	nd this
function in the 	rst place�

There are three components to color� which seem to describe color much more predictably
than does RGB� These are hue� saturation� and lightness� The hue describes the dominant
wavelength of the color in terms of one of the pure colors of the spectrum that we gave
earlier� The saturation describes how pure the light is� The red color of a 	re�engine is highly
saturated� whereas pinks and browns are less saturated� involving mixtures with grays� Gray
tones �including white and black� are the most highly unsaturated colors� Of course lightness
indicates the intensity of the color� But although these terms are somewhat more intuitive�
they are hardly precise�

The tristimulus theory suggests that we perceive color by a process in which the cones of the
three types each send signals to our brain� which sums these responses and produces a color�
This suggests that there are three �primary� spectral distribution functions� R���� G���� and
B���� and every saturated color that we perceive can be described as a linear combination of
these three�

C � rR gG bB�

�This means that we weight these three functions by the scalars r� g� and b and integrate over
the entire spectrum� then C is the color that we perceive��

Extensive studies with human subjects have shown that it is indeed possible to de	ne saturated
colors as a combination of three spectra� but the result has a very strange outcome� Some
colors can only be formed by allowing some of the coe�cients r� g� or b to be negative� E�g�
there is a color C such that

C �
��R
��G�
��B�
We know what it means to form a color by adding light� but we cannot subtract light that is
not there� The way that this equation should be interpreted is that we cannot form color C
from the primaries� but we can form the color C
��B by combining
��R
��G� When we
combine colors in this way they are no longer pure� or saturated� Thus such a color C is in
some sense super saturated� since it cannot be formed by a purely additive process�

The CIE Standard� In ���� a commission was formed to attempt to standardize the science of
colorimetry� This commission was called the Commission Internationale de l�#Eclairage� or CIE�

The results described above lead to the conclusion that we cannot describe all colors as positive
linear combinations of three primary colors� So� the commission came up with a standard
for describing colors� They de	ned three special super saturated X� Y � and Z� which do
not correspond to any real colors� but they have the property that every real color can be
represented as a positive linear combination of these three�

The resulting ��dimensional space� and hence is hard to visualize� A common way of drawing
the diagram is to consider a single ��dimensional slice� by normalize by cutting with the plane
X Y Z � �� We can then project away the Z component� yielding the chromaticity
coordinates�

x �
X

X Y Z
y �

Y

X Y Z

���

Lecture Notes CMSC ���

Z

X

X

Y

0

0.5

1.0

1.5

S
ti

m
ul

us
 v

al
ue

400 500 700600
Wave length (nm)

Figure ��� CIE primary colors �adapted from Hearn and Baker��

�and z can be de	ned similarly�� These components describe just the color of a point� Its
brightness is a function of the Y component� �Thus� an alternative� but seldom used� method
of describing colors is as xyY ��

If we plot the various colors in this �x� y� coordinates produce a ��dimensional �shark�	n�
convex shape shown in the 	gure below� Let�s explore this 	gure a little� Around the curved
top of the shark�	n we see the colors of the spectrum� from the long wavelength red to the
short wavelength violet� The top of the 	n is green� Roughly in the center of the diagram is
white� The point C corresponds nearly to �daylight� white� As we get near the boundaries of
the diagram we get the purest or most saturated colors �or hues�� As we move towards C� the
colors become less and less saturated�

The CIE model is useful for providing formal speci	cations of any color as a ��element vector�
however it is not the easiest way to produce color in hardware� Typical hardware devices like
CRT�s� televisions� and printers use other standards that are more convenient for generation
purposes� Unfortunately� neither CIE nor these models is particularly intuitive from a user�s
perspective�

Lecture �
� Final Review

�Tuesday� Dec ��� �����
Read� Since the midterm we have covered �parts of� Chapters �� and �
��� in Hill�

Overview� This semester we have presented an introduction to computer graphics� The main topics
that we covered included the basic elements of ��dimensional rendering �including basic geom�
etry� a�ne transformations� the OpenGL API� projective geometry and perspective�� lighting
and shading using the Phong model� providing surface details through texture and bump map�
ping� basic solid modeling �including CSG and Bezier curves and surfaces�� highly realistic
rendering through ray tracing� and basic implementation issues including �scan conversion and
hidden�surface removal�� and 	nally light and color modeling�

���

Lecture Notes CMSC ���

580

0.7

0.6

520
540

560

0.5

600

(Cyan)

(Blue)

(Violet)

0.60

Spectral colors

0.4

0.3

0.2

0.1

0
0.1 0.2 0.3 0.4 0.5

(Purple)

0.7

(Yellow)
500

y

x

700 (Red)

C (White)

(Green)

0.8

480

400

Color gamut

Figure ��� CIE chromaticity diagram and color gamut �adapted from Hearn and Baker��

What we didn�t cover� There is just too much material about computer graphics to squeeze into
one graphics course� Some issues include�

Anti�aliasing� A important problem in graphics is the presense of jagged�edges� These are
quite noticeable if you look closely at the ray�traced images from the last project� What
techniques can be used to reduce these jagged e�ects� We did not cover this� since a good
treatment of the subject would require a deeper understanding of sampling theory�

More global illumination models� We have seen numerous times this semester where we
�faked it� for the sake of speed� even though we knew that our models might not be com�
pletely realistic� However there are much more realistic global illumination models that
have been constructed� which model indirect illumination� They work on the assumption
that most surfaces re�ect a certain amount of the light that shines upon them� and so all
objects act as light sources� One such method is called radiosity�

More on modeling� We could have spent a whole semester discussing aspects of solid mod�
eling� We did not discuss the various types of spline curves and surfaces and NURBS
�nonuniform rational B�splines� and we did not discuss fractal models� There are also a
number of issues involved in representing and simplifying large complex surface models�

More issues with color� We just introduced color� but we did not discuss many of the issues
that are involved here� One involves conversion between di�erent color systems� Another
is the issue of approximating a large range of colors using a small look�up table of color
values� through the process of dithering�

Animation� Once you know how to make a single image� the next question is how to put
them together to form an animation� The main issues in animation involve topics such as
how animation is speci	ed �frame by frame or though some parametrically de	ned pro�
cess�� smooth interpolation between frames and morphing� temporal antialiasing issues�
and kinematics and dynamics� We also could have discussed modeling more complex
phenomena� for example� using particle systems to model movements of multiple objects�
We would also need to discuss modeling ��dimensional rotations and quaternions�

���

Lecture Notes CMSC ���

Topics� The 	nal exam will be comprehensive but will emphasize the material since the midterm�
Here are the main topics that we have covered since the midterm�

Old material� Do not neglect going over basic a�ne geometry� Although this was covered in
the 	rst part of the semester� it is something that will be needed everywhere in graphics�

Surface mappings� This was covered on the midterm� but there may be a couple of residual
questions on the topics of texture mapping and bump mapping�

Solid Modeling� We discussed a number of issues related to the representation of solid ob�
jects�

Polygonal Meshes and DCEL� We discussed representing objects as a patches of poly�
gons� and the DCEL �double�connect edge list� data structure for representing the
topological connections between patches�

CSG Trees� Constructive solid geometry involves the representation of objects as boolean
operations �union� intersection� subtraction� of primitive shapes�

Curves and Surfaces� We introduced the notion of Ck continuity� We discussed Bezier
curves and surfaces� their geometric properties� and subdivision methods� �B�splines
will not be covered��

Ray Tracing� We discussed ray tracing in depth as a method for generating very realistic
images� especially in the presence of re�ection and refraction e�ects� We also discussed
the related issues of�

Ray intersection� Compute the intersection between a ray and various types of objects�
We considered spheres� triangles� and Bezier�surfaces�

Procedural ��d texture� As part of the project we introduced the notion of a ��
dimensional texture� a function that maps a point in ��space to a color �as opposed
to the texture map method which 	rst reduces the point to a ��dimensional point in
parameter space��

Scan conversion� We discussed Bresenham�s algorithm for scan converting lines� We also
discussed how to scan convert polygons� using a carefully designed rule for handling
degenerate situations so that pixels that fall on the edges or vertices of a polygon are only
rendered once�

Hidden�Surface algorithms� The main algorithms we considered were the following�

Back�face culling� Not a general hidden�surface algorithm� but a quick and dirty heuris�
tic for removing faces on the back sides of objects from consideration�

Depth sort� Sorting the objects by depth and painting from back to front�

Depth�bu
er� Scan�converting polygons but storing depth in addition to color�

Light and Color� We introduced the basic elements of light and color and how they can be
modeled� We discussed gamma correction� the tristimulus theory �color is formed from
the mixture of three primary colors� and the CIE color model�

Lecture X��� More on Graphics Systems and Models

�Supplemental�
Read� This material is not covered in our text� See the OpenGL Programming Guide Chapt � for
discussion of the general viewing model�

Image Synthesis� In a traditional bottom�up approach to computer graphics� at this point we
would begin by discussing how pixels are rendered to the screen to form lines� curves� polygons�
and eventually build up to ��d and then to ��d graphics�

���

Lecture Notes CMSC ���

Instead we will jump directly into a discussion ��d graphics� We begin by considering a basic
model of viewing� based on the notion of a viewer holding up a synthetic�camera to a model
of the scene that we wish to render� This implies that our graphics model will involve the
following major elements�

Objects� A description of the ��dimensional environment� This includes the geometric struc�
ture of the objects in the environment� their colors� re�ective properties �texture� shini�
ness� transparency� etc��

Light sources� A description of the locations of light sources� their shape� and the color and
directional properties of their energy emission�

Viewer� A description of the location of the viewer and the position and properties of the
synthetic camera �direction� 	eld of view� and so on��

Each of these elements may be described to a greater or lesser degree of precision and realism�
Of course there are trade�o�s to be faced in terms of the e�ciency and realism of the 	nal
images� Our goal will be to describe a model that is as rich as possible but still fast enough to
allow real time animation �say� at least �
 frames per second� on modern graphics workstations�

Geometric Models� The 	rst issue that we must consider is how to describe our ��dimensional
environment in a manner that can be processed by our graphics API� As mentioned above� such
a model should provide information about geometry� color� texture� and re�ective properties
for these objects� Models based primarily around simple mathematical structures are most
popular� because they are easy to program with� �It is much easier to render a simple object
like a sphere or a cube or a triangle� rather than a complex object like a mountain or a cloud�
or a furry animal��

Of course we would like our modeling primitives to be �exible enough that we can model
complex objects by combining many of these simple entities� A reasonably �exible yet simple
method for modeling geometry is through the use of polyhedral models� We assume that
the solid objects in our scene will be described by their ��dimensional boundaries� These
boundaries will be assumed to be constructed entirely from �at elements �points� line segments�
and planar polygonal faces�� Later in the semester we will discuss other modeling methods
involving curved surfaces �as arise often in manufacturing� and bumpy irregular objects �as
arise often in nature��

The boundary of any polyhedral object can be broken down into its boundary elements of
various dimensions�

Vertex� Is a �
�dimensional� point� It is represented by its �x� y� z� coordinates in space�

Edge� Is a ���dimensional� line segment joining two vertices�

Face� Is a ���dimensional� planar polygon whose boundary is formed by a closed cycle of
edges�

The way in which vertices� edges and faces are joined to form the surface of an object is called
its topology� An object�s topology is very important for reasoning about it properties� �For
example� a robot system may want to know whether an object has an handles which it can use
to pick the object up with�� However� in computer graphics� we are typically only interested
in what we need to render the object� These are its faces�

Faces form the basic rendering elements in ��dimensional graphics� Generally speaking a
face can be de	ned by an unlimited number of edges� and in some models may even contain
polygonal holes� However� to speed up the rendering process� most graphics systems assume
that faces consist of simple convex polygons� A shape is said to be convex if any line intersects

���

Lecture Notes CMSC ���

the shape in a single line segment� Convex polygons have internal angles that are at most ��

degrees� and contain no holes�

Since you may want to have objects whose faces are not convex polygons� many graphics
API�s �OpenGL included� provide routines to break complex polygons down into a collection
of convex polygons� and triangles in particular �because all triangles are convex�� This process
is called triangulation or tesselation� This increases the number of faces in the model� but it
signi	cantly simpli	es the rendering process�

Figure ��� A polyhedral model and one possible triangulation of its faces�

In addition to specifying geometry� we also need to specify color� texture� surface 	nish� etc
in order to complete the picture� These elements a�ect how light is re�ected� giving the
appearance of dullness� shininess� bumpiness� fuzziness� and so on� We will discuss these
aspects of the model later� This is one of the most complex aspects of modeling� and good
surface modeling may require lots of computational time� In OpenGL we will be quite limited
in our ability to a�ect surface 	nishes�

Light and Light Sources� The next element of the ��dimensional model will be the light sources�
The locations of the light sources will determine the shading of the rendered scene �which
surfaces are light and which are dark�� and the location of shadows� There are other important
elements with light sources as well� The 	rst is shape of the light source� Is it a point �like
the sun� or does it cover some area �like a �orescent light bulb�� This a�ects things like the
sharpness of shadows in the 	nal image� Also objects �like a brightly lit ceiling� can act as
indirect re�ectors of light� In OpenGL we will have only point light sources� and we will ignore
indirect re�ection� We will also pretty much ignore shadows� but there are ways of faking
them� These models are called local illumination models�

The next is the color of the light� Incandescent bulbs produce light with a high degree of red
color� On the other hand �orescent bulbs produce a much bluer color of light� Even the color
of the sun is very much dependent on location� time of year� time of day� It is remarkable how
sensitive the human eye is to even small variations�

The light that is emitted from real light sources is a complex spectrum of electromagnetic
energy �over the visible spectrum� wavelengths ranging from ��
 to ��
 nanometers�� However
to simplify things� in OpenGL �and almost all graphics systems� we will simply model emitted
light as some combination of red� green and blue color components� �This simple model cannot
easily handle some phenomenon such as rainbows��

Just how light re�ects from a surface is a very complex phenomenon� depending on the surface
qualities and microscopic structure of object�s surface� Some objects are smooth and shiny and
others are matte �dull�� OpenGL models the re�ective properties of objects by assuming that
each object re�ects light in some combination of these extremes� Later in the semester we will
discuss shiny or specular re�ection� and dull or di�use re�ection� We will also model indirect
re�ection �light bouncing from other surfaces� by assuming that there is a certain amount of
ambient light� which is just �oating around all of space� without any origin or direction�

���

Lecture Notes CMSC ���

Later we will provide an exact speci	cation for how these lighting models work to determine
the brightness and color of the objects in the scene�

Camera Model� Once our ��dimensional scene has been modeled� the next aspect to specifying
the image is to specify the location and orientation of a synthetic camera� which will be taking
a picture of the scene�

Basically we must project a ��dimensional scene onto a ��dimensional imaging window� There
a number of ways of doing this� The simplest is called a parallel projection where all objects are
projected along parallel lines� and the other is called perspective projection where all objects are
projected along lines that meet at a common point� Parallel projection is easier to compute�
but perspective projections produce more realistic images�

One simple camera model is that of a pin�hole camera� In this model the camera consists of a
single point called the center of projection on one side of a box and on the opposite side is the
imaging plane or view plane onto which the image is projected�

Let us take a moment to consider the equations that de	ne how a point in ��space would be
projected to our view plane� To simplify how perspective views are taken� let us imaging that
the camera is pointing along the positive z�axis� the center of projection is at the origin� and
the imaging plane is distance d behind the center of projection �at z � �d�� Let us suppose
that the box is h units high �along the y�axis� and w units wide �along the x�axis��

A side view along the yz�plane is shown below� Observe that� by similar triangles� a point
with coordinates �y� z� will be projected to the point

yp � � y

z�d
�

and by a similar argument the x�coordinate of the projection will be

xp � � x

z�d
�

z

(y,z)

z

yy

θh

d

h

d

Figure ��� Pinhole camera�

Thus once we have transformed our points into this particular coordinate system� computing
a perspective transformation is a relatively simple operation�

�x� y� z��
�
� x

z�d
�� y

z�d
��d

�
�

The z�coordinate of the result is not important �since it is the same for all projected points�
and may be discarded�

Finally observe that this transformation is not de	ned for all points in ��space� First o�� if
z �
� then the transformation is unde	ned� Also observe that this transformation has no

��

Lecture Notes CMSC ���

problem projecting points that lie behind the camera� For this reason it will be important to
clip away objects that lie behind plane z �
 before applying perspective�

Even objects that lie in front of the center of projection may not appear in the 	nal image�
if their projection does not lie on the rectangular portion of the image plane� By a little
trigonometry� it is easy to 	gure out what is the angular diameter 	 of the cone of visibility�
Let us do this for the yz�plane� This is called the �eld of view �for y�� �A similar computation
could be performed for the xz�plane�� The 	rst rule of computing angles is to reduce everything
to right triangles� If we bisect 	 by the z�axis� then we see that it lies in a right triangle whose
opposite leg has length h�� and whose adjacent leg has length d� implying that tan�	��� �
h���d�� Thus� the 	eld of view is

	 � �arctan
h

�d
�

Observe that the image has been inverted in the projection process� In real cameras it is
not possible to put the 	lm in from of the lens� but there is not reason in our mathematical
model that we should be limited in this way� Consequently� when we introduce the perspective
transformation later� we assume that the view plane is in front of the center of projection�
implying that the image will not be inverted�

Before moving on we should point out one important aspect of this derivation� Reasoning in
��space is very complex� We made two important assumptions to simplify our task� First�
we selected a convenient frame of reference �by assuming that the camera is pointed along
the z�axis� and the center of projection is the origin� The second is that we projected the
problem to a lower dimensional space� where it is easier to understand� First we considered
the yz�plane� and reasoned by analogy to the xy�plane� Remember these two ideas� They are
fundamental to getting around the complexities of geometric reasoning�

But what if you camera is not pointing along the z�axis� Later we will learn how to perform
transformations of space� which will map objects into a coordinate system that is convenient
for us�

Camera Position� Given our ��dimensional scene� we need to inform the graphics system where
our camera is located� This usually involves specifying the following items�

Camera location� The location of the center of projection�

Camera direction� What direction �as a vector� is the camera pointed in�

Camera orientation� What direction is �up� in the 	nal image�

Focal length� The distance from the center of projection to the image plane�

Image size� The size �and possibly location� of the rectangular region on the image plane to
be taken as the 	nal image�

There are a number of ways of specifying these quantities� For example� rather than specifying
focal length and image size� OpenGL has the user specify the 	eld of view and the image aspect
ratio� the ratio of its width �x� to height �y��

At this point� we have outlined everything that must be speci	ed for rendering a ��dimensional
scene �albeit with a considerable amount of simpli	cation and approximation in modeling��
Next time we will show how to use OpenGL to turn this abstract description into a program�
which will render the scene�

��

Lecture Notes CMSC ���

Lecture X��� X Window System

�Supplemental�
Read� Chapter � in Hill�

X Window System� Although Window systems are not one of the principal elements of a graphics
course� some knowledge about how typical window systems works is useful� We will discuss
elements of the X�window system� which is typical of many window systems� such as Win�
dows��

X divides the display into rectangular regions called windows� �Note� The term window when
used later in the context of graphics will have a di�erent meaning�� Each window acts as an
input�output area for one or more processes� Windows in X are organized hierarchically� thus
each window �except for a special one called the root that covers the entire screen� has a parent
and may have one or more child windows that it creates and controls� For example� menus�
buttons� scrollbars are typically implemented as child windows�

Window systems like X are quite complex in structure� The following are components of X�

X�protocol� The lowest level of X provides routines for communicating with graphics devices
�which may reside elsewhere on some network��

One of the features of X is that a program running on one machine can display graphics
on another by sending graphics �in the form of messages� over the network� Your program
acts like a client and sends commands to the X�server which talks to the display to make
the graphics appear� The server also handles graphics resources� like the color map�

Xlib� This is a collection of library routines� which provide low�level access to X functions�
It provides access to routines for example� creating windows� setting drawing colors�
drawing graphics �e�g�� lines� circles� and polygons�� drawing text� and receiving input
either through the keyboard or mouse�

Another important aspect of Xlib is maintaining a list of user�s preferences for the ap�
pearance of windows� Xlib maintains a database of desired window properties for various
applications �e�g�� the size and location of the window and its background and foreground
colors�� When a new application is started� the program can access this database to
determine how it should con	gure itself�

Toolkit� Programming at the Xlib level is extremely tedious� A toolkit provides a higher
level of functionality for user interfaces� This includes objects such as menus� buttons�
and scrollbars�

When you create a button� you are not concerned with how the button is drawn or
whether its color changes when it is clicked� You simply tell it what text to put into the
button� and the system takes care drawing the button� and informing your program when
a the button has been selected� The X�toolkit functions translate these requests into calls
to Xlib functions� We will not be programming in Xlib or the X�toolkit this semester�
We will discuss GLUT later� This is a simple toolkit designed for use with OpenGL�

Graphics API� The toolkit supplies tools for user�interface design� but it does little to help
with graphics� Dealing with the window system at the level of drawing lines and polygons
is very tedious when designing a ��dimensional graphics program� A graphics API �appli�
cation programming interface� is a library of functions which provide high�level access to
routines for doing ��dimensional graphics� Examples of graphics API�s include PHIGS�
OpenGL �which we will be using�� and Java�D�

Window Manager� When you are typing commands in a Unix system� you are interacting with
a program called a shell� Similarly� when you resize windows� move windows� delete windows�

���

Lecture Notes CMSC ���

X Server

Device Drivers
Display

Xlib

Client

Xlib

Network

Window Man.

Mouse

Keyboard

OpenGL

Toolkit

Client

Xlib

Figure ��� X�windows client�server structure�

you are interacting with a program called a window manager� A window manager �e�g� twm�
ctwm� fvwm� is just an application written in X� It�s only real �privilege� with respect to the
X system is that it has 	nal say over where windows are placed� Whenever a new window is
created� the window�manager is informed of its presence� and informs approves �or determines�
its location and placement�

It is the window manager�s job to control the layout of the various windows� determine where
these windows are to be placed� and which windows are to be on top� Neither the window
manager� nor X� is responsible for saving the area of the screen where a window on top
obscures a window underneath� Rather� when a window goes away� or is moved� X informs
the program belonging to the obscured window that it has now been �exposed�� It is the job
of the application program to redraw itself�

Lecture X��� Ray�Polyhedron Intersectino

�Supplementary�
Comment� The representation of a plane as a homogeneous equation here should probably be
replaced by a representation as a point and an outward pointing normal� See the lecture on the
Liang�Barsky clipping algorithm�

Ray�Polyhedron Intersection� We present an intersection algorithm for a ray and a convex poly�
hedron� The convex polyhedron is de	ned as the intersection of a collection of halfspaces in
��space� �This algorithm is a variation of the Liang�Barsky line segment clipping algorithm�
which is used for clipping line segments against the ��dimensional view volume� which was in�
troduced when we were discussing perspective�� As before� we represent the ray parametrically
as P t�u� for scalar t �
� Let H��H�� � � � �Hk denote the halfspaces de	ning the polyhedron�
We will compute the intersection of the ray with each halfspace in turn� The 	nal result will
be the intersection of the ray with the entire polyhedron�

An important property of convex bodies �of any variety� is that a line intersects a convex body
in at most one line segment� Thus the intersection of the ray with the polyhedron can be
speci	ed entirely by an interval of scalars �t�� t��� such that the intersection is de	ned by the
set of points

P t�u for t� � t � t��

���

Lecture Notes CMSC ���

Initially� let this interval be �
���� �For line segment intersection the only change is that
the initial value of t� is set so that we end and the endpoint of the segment� Otherwise the
algorithm is identical��

Suppose that we have already performed the intersection with some number of the halfspaces�
It might be that the intersection is already empty� This will be re�ected by the fact that t� � t��
When this is so� we may terminate the algorithm at any time� Otherwise� let H � �a� b� c� d�
be the coe�cients of the current halfspace�

We want to know the value of t �if any� at which the ray intersects the plane� Plugging in the
representation of the ray into the halfspace inequality we have

a�px t�ux� b�py t�uy� c�pz t�uz� d �
�
which after some manipulations is

t�a�ux b�uy c�uz� � ��apx bpy cpz d��

If P and �u are given in homogeneous coordinates� this can be written as

t�H � �u� � ��H � P ��
This is not really a legitimate geometric expression �since dot product should only be applied
between vectors�� Actually the halfspace H should be thought of as a special geometric object�
a sort of generalized normal vector� For example� when transformations are applied� normal
vectors should be multiplied by the inverse transpose matrix to maintain orthogonality�

We consider three cases�

�H � �u� �
 � In this case we have the constraint

t � ��H � P �
�H � �u� �

Let t� denote the right�hand side of this inequality� We trim the high�end of the inter�
section interval to �t��min�t�� t����

�H � �u�

 � In this case we have
t � ��H � P �

�H � �u� �

Let t� denote the right�hand side of this inequality� In this case� we trim the low�end of
the intersection interval to �max�t�� t

��� t���

�H � �u� �
 � In this case the ray is parallel to the plane� Either entirely above or below� We
check the origin� If �H � P � �
 then the origin lies in �or on the boundary of� the
halfspace� and so we leave the current interval unchanged� Otherwise� the origin lies
outside the halfspace� and the intersection is empty� To model this we can set t� to any
negative value� e�g�� ���

After we repeat this on each face of the polyhedron� we have the following possibilities�

t�
 t� � In this case the ray does not intersect the polyhedron�

 � t� � t� � In this case� the origin is within the polyhedron� If t� ��� then the polyhedron
must be unbounded �e�g� like a cone� and there is no intersection� Otherwise� the 	rst
intersection point is the point P t��u�

 t� � t� � In this case� the origin is outside the polyhedron� and the 	rst intersection is at
P t��u�

���

Lecture Notes CMSC ���

As with spheres it is a good idea to check against a small positive number� rather than

exactly� because of �oating point errors� For ray tracing applications� when we set the value
of either t� or t�� it is a good idea to also record which halfspace we intersected� This will be
useful if we want to know the normal vector at the point of intersection �which will be �a� b� c�
for the current halfspace��

Lecture X��� Scan Conversion of Circles

�Supplementary�
Read� Section ��� in Foley� vanDam� Feiner and Hughes�

Midpoint Circle Algorithm� Let us consider how to generalize Bresenham�s midpoint line draw�
ing algorithm for the rasterization of a circle� We will make a number of assumptions to
simplify the presentation of the algorithm� First� let us assume that the circle is centered at
the origin� �If not� then the initial conditions to the following algorithm are changed slightly��
Let R denote the �integer� radius of the circle�

The 	rst observations about circles is that it su�ces to consider how to draw the arc in the
positive quadrant from ��� to ���� since all the other points on the circle can be determined
from these by ��way symmetry�

(x,y)

(y,x)

(y,−x)

(x,−y)

(−y,−x)

(−x,−y)

(−x,y)

(−y,x)

Figure �� ��way symmetry for circles�

What are the comparable elements of Bresenham�s midpoint algorithm for circles� As before�
we need an implicit representation of the function� For this we use

F �x� y� � x� y� �R� �
�

Note that for points inside the circle �or under the arc� this expression is negative� and for
points outside the circle �or above the arc� it is positive�

Let�s assume that we have just 	nished drawing pixel �xp� yp�� and we want to select the next
pixel to draw �drawing clockwise around the boundary�� Since the slope of the circular arc
is between
 and ��� our choice at each step our choice is between the neighbor to the east
E and the neighbor to the southeast SE� If the circle passes above the midpointM between
these pixels� then we go to E next� otherwise we go to SE�

Next� we need a decision variable� We take this to be the value of F �M �� which is

D � F �M � � F �xp �� yp � �

�
�

� �xp ��
� �yp � �

�
�� � R��

���

Lecture Notes CMSC ���

yp

xp +1xp

yp−1

E

SE

M

Figure �
� Midpoint algorithm for circles�

If D

 then M is below the arc� and so the E pixel is closer to the line� On the other hand�
if D �
 then M is above the arc� so the SE pixel is closer to the line�

Again� the new value of D will depend on our choice�

We go to E next� Then the next midpoint will have coordinates �xp �� yp � ������ and
hence the new d value will be

Dnew � F �xp �� yp � �
�
�

� �xp ��
� �yp � �

�
�� �R�

� �x�p �xp �� �yp �
�

�
�� � R�

� �x�p �xp �� ��xp �� �yp �
�

�
�� �R�

� �xp ��
� ��xp �� �yp � �

�
�� �R�

� D ��xp ���

Thus� the new value of D will just be the current value plus �xp ��

We go to NE next� Then the next midpoint will have coordinates �xp �� Syp � �� ������
and hence the new D value will be

Dnew � F �xp �� yp � �
�
�

� �xp ��
� �yp � �

�
�� �R�

� �x�p �xp �� �y
�
p � �yp

�
��R�

� �x�p �xp �� ��xp �� �y
�
p � yp

�

�
� ���yp �

�
�� R�

� �xp ��
� �yp � �

�
�� �R� ��xp �� ���yp ��

� D ��xp � �yp ��

Thus the new value of D will just be the current value plus ��xp � yp� ��

The last issue is computing the initial value of D� Since we start at x �
� y � R the 	rst

���

Lecture Notes CMSC ���

midpoint of interest is at x � �� y � R� ���� so the initial value of D is

Dinit � F ��� R� �

�
�

� � �R� �

�
�� � R�

� � R� �R
�

�
�R�

�
�

�
� R�

This is something of a pain� because we have been trying to avoid �oating point arithmetic�
However� there is a very clever observation that can be made at this point� We are only
interested in testing whether D is positive or negative� Whenever we change the value of D�
we do so by a integer increment� Thus� D is always of the form D� ���� where D� is an
integer� Such a quantity is positive if and only if D� is positive� Therefore� we can just ignore
this extra ��� term� So� we initialize Dinit � � � R �subtracting o� exactly ����� and the
algorithm behaves exactly as it would otherwise"

Lecture X��� Cohen�Sutherland Line Clipping

�Supplemantal�

Cohen�Sutherland Line Clipper� Let us consider the problem of clipping a line segment with
endpoint coordinates P� � �x�� y�� and P� � �x�� y��� against a rectangle whose top� bottom�
left and right sides are given by WT � WB � WL and WR� respectively� We will present an
algorithm called the Cohen�Sutherland clipping algorithm� The basic idea behind almost all
clipping algorithms is that it is often the case that many line segments require only very simple
analysis to determine either than they are entirely visible or entirely invisible� If either of these
tests fail� then we need to invoke a more complex intersection algorithm�

To test whether a line segment is entirely visible or invisible� we use the following �imperfect
but e�cient� heuristic� Let be the endpoints of the line segment to be clipped� We compute a
� bit code for each of the endpoints P� and P�� The code of a point �x� y� is de	ned as follows�

Bit �� � if point is above window� i�e� y � WT �

Bit �� � if point is below window� i�e� y
 WB �

Bit �� � if point is right of window� i�e� x � WR�

Bit � � if point is left of window� i�e� x
 WL�

This subdivides the plane into regions based on the values of these codes� See the 	gure�

Now� observe that a line segment is entirely visible if and only if both of the code values of
its endpoints are equal to zero� That is� if C� � C� �
 then the line segment is visible and
we draw it� If both line segments lie entirely above� entirely below� entirely right or entirely
left of the window then the segment can be rejected as completely invisible� In other words� if
C� � C�
�
 then we can discard this segment as invisible� Note that it is possible for a line
to be invisible and still pass this test� but we don�t care� since that is a little extra work we
will have to do to determine that it is invisible�

Otherwise we have to actually clip the line segment� We know that one of the code values
must be nonzero� let�s assume that it is �x�� x��� �Otherwise swap the two endpoints�� Now�

���

Lecture Notes CMSC ���

0001

1001 1000 1010

00100000

01000101 0110

Window

WL WR

WB

WT

Figure ��� Cohen�Sutherland region codes�

we know that some code bit is nonzero� let�s try them all� Suppose that it is bit �� implying
that x�
 WL� We can infer that x� � WL for otherwise we would have already rejected
the segment as invisible� Thus we want to determine the point �xc� yc� at which this segment
crosses WL� Clearly

xc �WL�

and using similar triangles we can see that

yc � y�
y� � y�

�
WL � x�
x� � x�

�

WL−x0

x1−x0

(x0,y0)

(x1,y1)

(xc,yc)

WL

y1−y0

yc−y0

Figure ��� Clipping on left side of window�

From this we can solve for yc giving

yc �
WL � x�
x� � x�

�y� � y�� y��

Thus� we replace �x�� y�� with �xc� yc�� recompute the code values� and continue� This is
repeated until the line is trivially accepted �all code bits �
� or until the line is completely
rejected� We can do the same for each of the other cases�

���

Lecture Notes CMSC ���

Lecture X��� Halftone Approximation

�Supplemental�
Read� Chapter �
 in Hill�

Halftone Approximation� Not all graphics devices provide a continuous range of intensities� In�
stead they provide a discrete set of choices� The most extreme case is that of a monochrom
display with only two colors� black and white� Inexpensive monitors have look�up tables
�LUT�s� with only ��� di�erent colors at a time� Also� when images are compressed� e�g� as in
the gif format� it is common to reduce from ���bit color to ��bit color� The question is� how
can we use a small number of available colors or shades to produce the perception of many
colors or shades� This problem is called halftone approximation�

We will consider the problem with respect to monochrome case� but the generalization to
colors is possible� for example by treating the RGB components as separate monochrome
subproblems�

Newspapers handle this in reproducing photographs by varying the dot�size� Large black dots
for dark areas and small black dots for white areas� However� on a CRT we do not have this
option� The simplest alternative is just to round the desired intensity to the nearest available
gray�scale� However� this produces very poor results for a monochrome display because all the
darker regions of the image are mapped to black and all the lighter regions are mapped to
white�

One approach� called dithering� is based on the idea of grouping pixels into groups� e�g� �� �
or �� � groups� and assigning the pixels of the group to achieve a certain a�ect� For example�
suppose we want to achieve � halftones� We could do this with a �� � dither matrix�

0.0−0.2 0.2−0.4 0.4−0.6 0.6−0.8 0.8−1.0

Figure ��� Halftone approximation with dither patterns�

This method assumes that our displayed image will be twice as large as the original image� since
each pixel is represented by a � � � array� �Actually� there are ways to adjust dithering so it
works with images of the same size� but the visual e�ects are not as good as the error�di�usion
method below��

If the image and display sizes are the same� the most popular method for halftone approxi�
mation is called error di�usion� Here is the idea� When we approximate the intensity of a
pixel� we generate some approximation error� If we create the same error at every pixel �as
can happen with dithering� then the overall image will su�er� We should keep track of these
errors� and use later pixels to correct for them�

Consider for example� that we a drawing a ��dimensional image with a constant gray tone of
��� on a black and white display� We would round the 	rst pixel to
 �black�� and incur an
error of ���� The next pixel will have gray tone ��� which we add the previous error of ���
to get ���� We round this to the next pixel value of � �white�� The new accumulated error
is ����� We add this to the next pixel to get
� which we draw as
 �black�� and the 	nal
error is
� After this the process repeats� Thus� to achieve a ��� tone� we generate the pattern

�

�

�

�
 � � �� as desired�

We can apply this to ��dimensional images as well� but we should spread the errors out in
both dimensions� Nearby pixels should be given most of the error and further away pixels be

���

Lecture Notes CMSC ���

given less� Furthermore� it is advantageous to distribute the errors in a somewhat random
way to avoid annoying visual e�ects �such as diagonal lines or unusual bit patterns�� The
Floyd�Steinberg method distributed errors as follows� Let �x� y� denote the current pixel�

Right� ���� of the error to �x �� y��

Below left� ���� of the error to �x� �� y � ���
Below� ���� of the error to �x� y � ���
Below right� ���� of the error to �x �� y � ���
Thus� let S�x��y� denote the shade of pixel �x� y�� To draw S�x��y� we round it to the nearest
available shade K and set err � S�x��y��K� Then we compensate by adjusting the surrounding
shades� e�g� S�x ���y� � ������err�

There is no strong mathematical explanation �that I know of� for these magic constants�
Experience shows that this produces fairly good results without annoying artifacts� The dis�
advantages of the Floyd�Steinberg method is that it is a serial algorithm �thus it is not possible
to determine the intensity of a single pixel in isolation�� and that the error di�usion can some�
times general �ghost� features at slight displacements from the original�

The Floyd�Steinberg idea can be generalized to colored images as well� Rather than thinking
of shades as simple scalar values� let�s think of them as vectors in a ��dimensional RGB space�
First� a set of representative colors is chosen from the image �either from a 	xed color palette
set� or by inspection of the image for common trends�� These can be viewed as a set of� say ����
points in this ��dimensional space� Next each pixel is �rounded� to the nearest representative
color� This is done by de	ning a distance function in ��dimensional RGB space and 	nding
the nearest neighbor among the representatives points� The di�erence of the pixel and its
representative is a ��dimensional error vector which is then propagated to neighboring pixels
as in the ��dimensional case�

Lecture X��� ��d Rotation and Quaternions

�Supplemental�
Read� This material is covered only brie�y in Foley �Sect� �������� My presentation is coming
mostly from the book �Advanced Animation and Rendering Techniques� by A� Watt and M� Watt
�����

Rotation and Orientation in ��Space� One of the trickier problems ��d geometry is that of
parameterizing rotations and the orientation of frames� We have introduced the notion of
orientation before �e�g�� clockwise or counterclockwise�� Here we mean the term in a somewhat
di�erent sense� as a directional position in space� Describing and managing rotations in ��
space is a very di�cult task �at least conceptually�� compared with the relative simplicity of
rotations in the plane�

Why do we care about rotations� Suppose that you are an animation programmer for a
computer graphics studio� The object that you are animating is to be moved smoothly from
one location to another� If the object is in the same directional orientation before and after� we
can just translate from one location to the other� If not� we need to 	nd a way of interpolating
between its two orientations� This usually involves rotations in ��space� But how should these
rotations be performed so that the animation looks natural� Another example is one in which
the world is stationary� but the camera is moving from one location and viewing situation to
another� Again� how can we move smoothly and naturally from one to the other�

Since smoothly interpolating positions by translation is pretty easy to understand� let us ignore
the issue of position� and just focus on orientations and rotations about the origin� Let F denote

��

Lecture Notes CMSC ���

Figure ��� Floyd�Steinberg Algorithm �Source� Poulb#ere and Bousquet� ���

��

Lecture Notes CMSC ���

the standard coordinate frame� and consider another orthonormal frames G� We want some
way to represent G concisely� relative to F � Furthermore� given two such orthonormal frames�
G and H� we would like a way to interpolate smoothly between these two �say if we want to
produce a smooth animation from one to the other�� We could just represent G and H by
their orthonormal basis vectors� But if we were to interpolate �linearly� between corresponding
pairs of basis vectors� the intermediate vectors would not necessarily be orthonormal� We will
explore two methods for dealing with rotation� Euler angles and quaternions�

y

z

x

y

z

x
G

H

Figure ��� Smooth Interpolation of Frames�

Euler Angles� Euler was a famous mathematician who lived in the ��th century� He proved many
important theorems� among which is one that states that the composition any number of
rotations in three�space is just a single rotation in ��space �about an appropriately chosen
vector�� Euler also showed that any rotation in ��space could be broken down into exactly
three rotations� one about each of the coordinate axes� These are sometimes called rolls�

For example� consider the orthonormal frame G� described earlier� Suppose that we want to
rotate the standard frame F so that it coincides with G� Let us consider the process in reverse�
We will see how to rotate G so that it coincides with the standard frame� Perhaps the easiest
way to see this is to consider the three rotations that bring G into alignment with F � and then
reverse these rotations�

This process is easier to describe than it is to visualize� Suppose that we label G�s basis vectors
�u� �v and �w� Let �w� denote the projection of w onto the yz�coordinate plane� First rotate about
the x�axis by some angle 	x� until the vector �w� coincides with the z�axis� �See part �a� of
the 	gure below�� The original vector �w will now lie on the xz�coordinate plane� Next� rotate
about the y�axis �thus keeping the xz�coordinate plane 	xed� until �w coincides with the z�axis�
�See part �b� of the 	gure�� Call this angle 	y� When this happens� the two vectors �u and �v
�being orthogonal to �w� must lie on the xy�plane� Finally� we rotate about the z�axis until �u
coincides with the x�axis� �See part �c� of the 	gure�� Call this angle 	z � Assuming that G is
orthonormal and right�handed� it follows that �v will coincide with the y�axis� Thus� by these
three rotations� one about each of the axes� we can bring G into alignment with F �

It follows that it is possible to perform any change of orientation with three rotations� one
about each of the coordinate axes� by a triple of three angles� �	x� 	y� 	z�� These de	ne a
general rotation matrix� by composing the three basic rotations�

R�	x� 	y� 	z� � Rz�	z�Ry�	y�Rx�	x��

These three angles are called the Euler angles for the rotation� Thus� we can parameterize any
rotation in ��space as triple of numbers� each in the range �
� ����

Now� given two orientations in space� say given by the Euler angles & � �	x� 	y� 	z� and
' � ��x� �y� �z�� we can interpolate between then� say by taking convex combinations� Given
any � � �
� ��� we can de	ne

R��� � R���� ��& �'��

���

Lecture Notes CMSC ���

θx

x

z

y

w’

w

x

z=w

y

x

z

y

θy

w

w’

θz

u

v

(a) Rotate about x so
that w lies in xz−plane.

(b) Rotate about y so
that w coincides with z.

(c) Rotate about z so that
u and v coincide with x and y.

Figure ��� Rotating a frame to coincide with the standard frame�

for example� As � varies from
 to �� this will smoothly rotate from one orientation to the
other�

There are some problems with Euler angles� The major problem is the fact that this repre�
sentation depends on the choice of coordinate system� In the plane� a �
 degree rotation is
the same� no matter what direction the axes are pointing �as long as they are orthonormal
and right�handed�� However� the result of an Euler angle orientation depends very much on
where the frame is� and even the order in which you name the axes� It would be nice to have a
method of describing rotations that is independent of the choice of coordinate systems� This
is what we consider next time�

Angular Displacement� Last time we discussed Euler angles as a means of expressing general
rotations in ��space� However� we noted that the result of an Euler angle transformation
depends on the positioning of the axes� and on the order in which the axes are labeled� Today
we discuss an approach to rotation that is invariant under rigid changes of the coordinate
system�

Perhaps a somewhat more natural way to express rotations �about the origin� in ��space is
in terms of two quantities� �	� �u�� consisting of an angle 	� and an axis of rotation �u� Let�s
consider how we might do this� First consider a vector �v to be rotated� Let us assume that �u
is of unit length�

Our goal is to describe the image of �v under this rotation as a function of 	 and �u� Let
R��v� denote this image� In order to derive this� we begin by decomposing �v as the sum of its
components that are parallel to and orthogonal to �u� respectively�

�vk � ��u � �v��u �v� � �v � �vk � �v � ��u � �v��u�

Note that �vk is una�ected by the rotation� but �v� is rotated to a new position R��v��� To
determine this rotated position� we will 	rst construct a vector that is orthogonal to �v� lying
in the plane of rotation�

�w � �u� �v� � �u� ��v � �vk� � ��u� �v�� ��u� �vk� � �u� �v�

The last step follows from the fact that �u and �vk are parallel� and so the cross product is zero�
Clearly �w is orthogonal to both �v� and �u� Furthermore� because �v� is orthogonal to the unit
vector �u� it follows that �w is of the same length as �v��

Now� consider the plane spanned by �v� and �w� We have

R��v�� � �cos 	��v� �sin 	��w�

���

Lecture Notes CMSC ���

v

vR()

v

v

u

R(v)
w

θ

w

θv

Figure ��� Angular displacement�

From this we have

R��v� � R��vk� R��v��

� R��vk� �cos 	��v� �sin 	��w

� ��u � �v��u �cos 	���v � ��u � �v��u� �sin 	��w
� �cos 	��v �� � cos 	��u��u � �v� �sin 	���u � �v��

This last expression is the image of �v under the rotation� Notice that� unlike Euler angles�
this is expressed entirely in terms of geometric quantities� which do not depend on the choice
of coordinates� This is an advantage over Euler angles� But it is rather hard to handle in this
form�

Quaternions� We will now delve into a subject� which at 	rst may seem quite unrelated� But keep
the above expression in mind� since it will reappear in most surprising way�

This story begins in the early �th century� when the great mathematician Hamilton was
searching for a generalization of the complex number system� Imaginary numbers can be
thought of as linear combinations of two basis elements� � and i� which satisfy the multiplication
rules �� � �� i� � �� and � �i � i �� � i� �The interpretation of i �

p�� arises from the second
rule�� Hamilton searched for a generalization involving two imaginary basis values� i and j�
but couldn�t make it work� After many years he hit upon the trick� which was to consider
three imaginary values i� j� and k� which behave as follows�

i� � j� � k� � �� ij � k� jk � i� ki � j�

Combining these� it follows that ji � �k� kj � �i and ik � �j� A quaternion is de	ned to be
a generalized complex number of the form

q � q� q�i q�j q�k�

We will see that quaternions bear a striking resemblance to our notation for angular displace�
ment� In particular� we can rewrite the quaternion notation in terms of a scalar and vector
as

q � �s� �u� � s uxi uyj uzk�

Given the rules above for multiplication� it is easy to derive the rules for multiplying quater�
nions�

q�q� � �s�s� � ��u� � �u��� s��u� s��u� �u� � �u���

�We will leave this derivation as an exercise� If you ignore the cross�product term� this bears
a striking super	cial resemblance to the rule for complex multiplication�� Quaternion multi�
plication is associative but not commutative�

���

Lecture Notes CMSC ���

De	ne the conjugate of a quaternion q � �s� �u� to be

q � �s���u��
It is easy to show that the product of a quaternion and its conjugate has a zero vector com�
ponent� and hence may be thought of as a scalar� De	ne the magnitude of a quaternion to be
the square root of this product

jqj� � qq � s� j�uj��
�Notice that we are abusing notation a bit here�� A unit quaternion is one of unit magnitude�
jqj � �� A pure quaternion is one with a
 scalar component

p � �
� �v��

Any quaternion of nonzero magnitude has a multiplicative inverse� which is

q�� �
�

jqj� q�

�Try multiplying qq�� to see why this is so�� Observe that if q is a unit quaternion� then
q�� � q�

Quaternions and Rotation� What do quaternions have to do with rotation in ��space� We will
represent a rotation by a unit quaternion q �we will see exactly how later�� Given any point
P � �vx� vy� vz� in ��space� we will represent it by mapping it to a pure quaternion� p � �
� �v��
The image of p under the rotation q will again be a pure quaternion �and so is easy to map
back to a point in ��space��

De	ne the rotation operator
Rq�p� � qpq���

By applying the multiplication rule� and using the fact that q�� � q for unit quaternions� it
is easy to derive that

Rq�p� � �
� �s
� � ��u � �u���v ��u��u � �v� �s��u � �v���

�Again� we leave the derivation as an exercise��

So what does this have to do with rotation� Let us see if we can express this in a more
suggestive form� Since q is of unit magnitude� we can express it as

q � �cos 	� �sin 	��u�� where j�uj � ��

Plugging this into the above expression� we have

Rq�p� � �
� �cos� 	 � sin� 	��v ��sin� 	��u��u � �v� � cos 	 sin 	��u � �v��

� �
� �cos �	��v ��� cos �	��u��u � �v� sin �	��u� �v���

Now� recall the rotation displacement equation presented earlier� The vector part of this
quaternion is identical� except that we have �	 in place of 	�

Thus� in summary� we encode points in ��space as pure quaternions

p � �
� �v��

and we encode a rotation by angle 	 about a unit vector �u as a unit quaternion

q � �cos�	���� sin�	����u��

���

Lecture Notes CMSC ���

then the image of the point under this rotation is given by the vector part of the result of the
quaternion rotation operator Rq�p��

For example� consider the ��d rotation shown in the 	gure below� This rotation can be achieved
by performing a rotation about the y�axis by �
 degrees� Thus 	 � ����� and �u � �
� ��
��
Thus the quaternion that encodes this rotation is

q � �cos������� sin�������
� ��
�� �
�
�p
�
�

�

�� �p

�
�

��
�

y
x

z

Figure ��� Rotation example�

The image of the point P on the tip of the x�unit vector with homogeneous coordinates
���
�
� ��� comes by representing P by a vector �v � ���
�
�� and then encoding �v as a pure
quaternion p � �
� ���
�
��� Then we apply the rotation operator

Rq�p� � �
� ����� �������
�
� ��
� ��
�
 ���
p
����
����

p
��
�� ���
�
���

� �
� �
�
�
� �
�
�
� �����
�
�����
� �
� �
�
� ����

Thus P is mapped to a point on the z�axis� as expected�

Composing Rotations� We have shown that each unit quaternion corresponds to a rotation in ��
space� This is an elegant representation� but can we manipulate rotations through quaternion
operations� The answer is yes� In particular� the action of multiplying two unit quaternions
results in another unit quaternion� Furthermore� the resulting product quaternion corresponds
to the composition of the two rotations� In particular� given two unit quaternions q and q��
a rotation by q followed by a rotation by q� is equivalent to a single rotation by the product
q�� � q�q� That is�

Rq�Rq � Rq�� where q�� � q�q�

This follows from the associativity of quaternion multiplication� and the fact that �qq���� �
q��q���� as shown below�

Rq��Rq�p�� � q��qpq���q���

� �q�q�p�q��q����

� �q�q�p�qq����

� q��pq����

� Rq���p��

Matrices and Quaternions� Quaternions provide a very elegant way of representing rotations in
��space� Returning to the problem of interpolating smoothly between two orientations� we can

���

Lecture Notes CMSC ���

see that we can describe the before and after orientations of any object by two quaternions�
q and p� Then� to interpolate smoothly between these two orientations� we just interpolate
between q and p in quaternion space� This is not really a linear interpolation� because the
quaterions must be of unit length� It is more like interpolating between two points on the
surface of a sphere�

However� once we have a quaternion representation� we need a way to inform our �quaternion
challenged�� graphics API �like OpenGL� about the actual transformation� In particular�
given a unit quaternion

q � �cos�	���� sin�	����u� � �w� �x� y� z���

what is the corresponding a�ne transformation �expressed as a rotation matrix�� By simply
expanding the de	nition of of Rq�p�� it is not hard to show that the following �homogeneous�
matrix is equivalent�

BB�
�� �y� � �z� �xy � �wz �xz �wy

�xy �wz �� �x� � �z� �yz � �wx

�xz � �wy �yz �wx �� �x� � �y�

 �

�
CCA �

Thus� given your quaternion interpolant� you generate this matrix� and invoke glLoadMatrix���
and all subsequently drawn points will be rotated in accordance with the quaternion�

Lecture X��� Radiosity

�Supplemental�
Read� Section ����� in Foley�

Radiosity� The whole philosophy of our previous lectures on illumination were based on what we
called �quick�and�dirty� methods� e�cient approaches that manage to �fool the eye�� This
philosophy represents the more applied branch of computer graphics� and we have seen that
very realistic images can be produced in this way� under various assumptions about lighting
and re�ection �e�g� that light sources are points� that there is no indirect illumination� that
surfaces are Lambertian� etc�� In particular� the idea that illumination is a local phenomenon
is central to the e�ciency of these approaches� This means that the illumination of a point
depends only on that point� and its relationship to a small number of point light sources� The
more theoretical branch of graphics insists that to achieve realism without these assumptions�
a global illumination model must be considered� Such an illumination model would take into
account the fact that light is not just coming from a few point light sources� but that light is
arriving indirectly from many di�erent directions�

Consider the following example� Imagine a room with white walls� Shine a single spot light
upwards from the �oor onto one of the walls� Is the wall the only object in the room to be
lit� No� the ceiling will be illuminated indirectly from this light� and the light from the ceiling
will dimly illuminate much of the rest of the room� A ray traced solution will only 	nd the
direct illumination of the light on the wall� The other indirect illuminations could only be
modeled using ambient light� Furthermore� if the wall that the light hits is colored red� then
the indirect illumination will have a red cast to it� even though the light source is white� Ray
tracing cannot account for this phenomenon�

What are the elements of a global illumination model� The basic idea is that rather than
viewing the world as a small set of light sources and a large number of nonradiating objects�
we think of each object as being a potential light source� Some objects �light sources� radiate

���

Lecture Notes CMSC ���

light directly� but others �nonblack surfaces� can radiate light indirectly� The illumination at
any point generally depends on all of the objects in the environment �at least those that are
visible from this object�� and furthermore the object has an in�uence on the illumination of
all the other objects� Radiosity is an example of a global illumination model�

Radiosity Overview� Before plunging into the details of the radiosity equations� let us 	rst con�
sider the problem at a high level� For each point on the surface of some object in our environ�
ment� we want to know the intensity of this point� how bright it appears� This intensity �called
the radiosity� of the point P is a function of ��� the emittance of light from this point �if it is
a light source�� and ��� the re�ection of light coming from other surfaces in the environment�
The second component is quite complicated� because it depends on the radiosity of points
on surfaces throughout the environment� whether these points are visible from P � and how
re�ective the surface is that P lies on�

Sampling� As one might imagine� radiosity computations are quite expensive from a com�
putational standpoint� The idea is that for every point in the environment� we need to
know the illumination of all the surface elements that this point can see� Thus� it is as if
we are solving a hidden surface removal problem for every point in the environment� Of
course� there are in	nitely many points in the environment� so to make this computation
tractable� it is common to solve this hidden surface problem for some sampled points in
the environment�

How are these points selected� There are a few approaches� The most common is based
on a generalization of the �nite element method� We subdivide each of the object surfaces
into a number of small polygonal patches� Such a subdivision is called a surface mesh�
For each patch� we will compute an approximation of the radiosity of this patch� For
example� this could be done by computing the radiosities at each of its vertices and then
averaging these�

How do you construct these patches� This is a hard question� If you make patches
very small you get good accuracy� but the execution time will be slow� If you make
the patches large� you gain speed� but at the cost of accuracy� The best methods use
an adaptive approach� First start with a coarse mesh� determining in which areas the
radiosity is varying most rapidly� and then re	ning these areas and trying again� When
the radiosity values are fairly constant in the neighborhood of a patch of the mesh� or
when the patches are deemed to be �small enough� then we do not need to re	ne further�
The 	gure below gives an example using a quadtree�based meshing algorithm where a
shadow has caused a sudden change in radiosity�

Figure �� Adaptive Meshing for Radiosity�

More sophisticated methods� like discontinuity meshing actually attempt to align the
edges of the mesh with sharp changes in radiosity �e�g� as happens along the edge of a
shadow��

���

Lecture Notes CMSC ���

Who comes �rst� So let us just assume that we have a set of points at which we will perform
radiosity computations� How do we compute the radiosity of a single point� There is
a real problem here� The radiosity at point A depends on the radiosity from all visible
points B� But similarly the radiosity at B depends on the radiosity at the visible point
A� How can we compute radiosities� when each seems to depend on all the others�

We will see that there are two general approaches� One is based on de	ning a large linear
system of equations� that �encodes� all of the radiosity dependencies� By solving this
equation� we can determine all the radiosities at all the points� The problem is that the
size of this linear equation is enormous� If you have n surface patches in your mesh�
the matrix storing the equation is of size n� � n�� This is because each variable in the
equation involves the transmission of light between two surface patches�

The other method is based on the idea of starting with the brightest light source and
shooting its radiation around to the entire scene� Next we move to the next brightest light
source and repeat this process� Note that as we do this� surfaces that were initially black
start picking up more and more intensity� Eventually a nonemitting light source can start
accumulating more and more intensity� until it becomes the brightest light source� and
then it shoots its intensity to the surrounding scene� This is called progressive re�nement
radiosity�

Basics of Radiance� The most basic concept of radiosity is radiance� We de	ne radiance� denoted
L� as the amount of energy per unit time �or equivalently power� emitted from a point x in
a given direction� We can de	ne the direction relative to a surface by giving two angles 	 the
angle with respect to the surface normal� and � the angle of the projection onto the surface�
We will use � to denote the resulting directional vector� Thus we will express radiance as
either L�x� 	� �� or more succinctly as L�x� ���

Since points and directions have no real size� we de	ne radiance in terms of small di�erential
quantities� We can think of a small di�erential area as a small square or circular patch on
the surface of an object� We can think of a di�erential direction as a small solid angle� that
is a small cone centered around this direction� Solid angles are measured in terms of radians
squared� or steradians�

In computer graphics� since we are assuming that radiance arises from a surface� we will apply
Lambert�s law to take into account the fact that for a piece of surface� the amount of energy
directed along the normal is greater than the amount of energy at a large angle to the normal�
Thus energy will be scaled by the cosine of the angle with the normal� Thus the power radiating
from a small patch in some small solid angle can be expressed as�

L�x� 	� ��dx cos 	d��

By the way� radiance is measured in watts per square meter per steradian�

θd dω

dx

φ

Figure
� Radiance�

We would like to express d� in terms of 	 and �� This is given by

d� � �sin 	�d	d��

���

Lecture Notes CMSC ���

The reason for the sin 	 term is that since 	 and � are related to latitude and longitude� and
	 becomes small� the longitude lines become closer and closer near the poles� This factor
accounts for this�

Radiance is a directional quantity� in that it depends not only on position but also on direction�
The radiosity� denoted B� of a point is de	ned to be the total power leaving a point on a surface
per unit area of the surface �in all directions�� We can de	ne radiosity in terms of the more
basic quantity radiance by integrating over the entire hemisphere lying above the surface� The
surface of this hemisphere is denoted (� Thus we can de	ne

B�x� �

Z
�

L�x� 	� �� cos 	d��

Simple Radiosity Equation� The most general illumination models are based on the idea of a
bidirectional re�ection function which indicates how the strength and direction of the re�ected
radiance depends on the strength and direction incoming radiance �called irradiance�� However�
it will simplify things greatly to assume that all surfaces are Lambertian� that is� ideal di�use
re�ectors� This has the advantage of eliminating all the directional elements of radiance�

If surfaces are Lambertian� then we can simplify L�x� 	� �� and just write L�x�� The radiosity
at the point x is given by

B�x� �

Z
�

L�x� 	� �� cos 	d�

� L�x�

Z
�

cos 	d�

� L�x�

Z �

�

Z ��

�

cos 	 sin 	d	d�

� �L�x��

This means simply that radiosity depends only on the radiance� the light power� at the point�

At this point we can state the radiosity equation �for Lambertian re�ectors�� It states that the
the radiosity of a point is equal to the amount of energy emitted from this point �this happens
when the point lies on a light source� plus the total re�ection of all incoming light� Let �d�x�
denote the coe�cient of di�use re�ection for the object at point x �earlier we had written this
kd�� We can write this as

L�x� � Le�x�
�d�x�

�

Z
�

Li�x� 	� �� cos 	d��

where Le denote emitted radiance and Li denotes the incoming irradiance� We cannot eliminate
the directional component from the Li term� because we still need to consider Lambert�s law
for incoming radiation� If we de	ne

H�x� �

Z
�

Li�x� 	� �� cos 	d��

and let E�x� denote the emitted radiosity �Le�x�� and recall that B�x� � �L�x� then we can
write this as

B�x� � E�x� �d�x�H�x��

The term H�x� essentially describes how much illumination energy is arriving from all other
points in the scene�

��

Lecture Notes CMSC ���

To simplify H�x� we can use the Lambertian assumption� Rather than integrating over the
angular space surrounding x� instead we will integrate over the set of points on all surfaces�
denoted S� Let y � S be such a surface point visible from x in direction �� Let 	� denote the
angle between the surface normal at y and the line�of�sight vector from y to x ����� and let
�� be de	ned similar to � but for y� Let r denote the distance from x to y�

θd

dx

dy

dθ’

r

Figure �� Illumination from another surface�

First we observe that by symmetry of radiance �the energy sent from y to x equals the energy
received from x to y�� we have L�x� 	� �� � L�y� 	�� ���� Since we assume that all surfaces are
Lambertian� we have

L�y� 	�� ��� �
B�y�

�
�

We can express the di�erential angle d� in terms of a di�erential area of the surface near y as

d� �
cos 	�dy

r�
�

�The r� term arises because as we move further away the di�erential angle sweeps out a larger
area� and the cosine term arises because as y�s surface is slanted with respect to the line of
sight� we sweep out a larger area��

Because we will integrate over all visible elements� we will include a visibility function V �x� y� �
� if x can see y and
 otherwise� Putting these together� we can now de	ne H�x� in terms of
an integral over surface points�

H�x� �

Z
y�S

B�y�
cos 	 cos 	�

�r�
V �x� y�dy�

Form Factors� In practice� we cannot expect to be able to solve this integral equation� As men�
tioned before� most radiosity methods are based on subdividing space into small patches� and
assuming that the radiosity is constant for each patch� Thus� in the equation for H�x� above�
we can assume that B�y� is constant for all points y in a surface patch�

For each pair of patches� Pi and Pj in our mesh� we de	ne the form factor Fi�j to be the
fraction of light energy leaving Pi that arrives at patch Pj�

Fi�j �
�

Aj

Z
x�Pi

Z
y�Pj

cos 	 cos 	�

�r�
V �x� y�dydx�

��

Lecture Notes CMSC ���

Fi�j is a dimensionless quantity� If patches are close� large� and facing one another� Fi� j will
be large�

From this we can rewrite the radiosity equation as a system of linear equations�

Bi � Ei �i

nX
j��

BjFj�i
Aj

Ai
�

Here Bi is the radiosity of patch i �the amount of light re�ected per unit area�� Ei is the
amount of light emitted from this patch per unit area� �i is the re�ectivity of patch i ��

means a dark nonre�ecting object and � � means a bright highly re�ecting object�� Finally
Ai and Aj are the areas of patches Pi and Pj� respectively� These terms are necessary because
all quantities were stated in terms of energy per unit area� so larger patches contribute more
energy�

Observe that this equation is circular� because it de	nes the light leaving a patch i in terms
of the light leaving a patch j� but the light leaving patch j may be a�ected by light leaving a
patch i� The way to think about this equation is a set of linear constraints �in the variables
Bi� which must all be satis	ed simultaneously� In other words� this is a system of linear
equations� Unlike the simple systems of � or � equations we have seen so far� this is a system
of perhaps thousands of equations� since we have one equation for each surface patch �and that
equation contains thousands of terms�� Clearly solving such a system is a task requiring heavy
computational resources� Fortunately� most small patches have virtually no e�ect on distant
patches� so the linear system is sparse� Iterative techniques from numerical analysis� such as
Gauss�Seidel� can be used to solve this type of system�

To make the connection with linear systems clearer� observe that since we assume that light
can travel equally well in any direction it follows that

AiFi�j � AjFj�i�

We can simplify the above equation as

Bi � Ei �i

nX
j��

BjFi�j

Ei � Bi � �i

nX
j��

BjFi�j

which can be written in matrix form as�
BBB�
�� ��F��� ���F��� � � � ���F��n
���F��� �� ��F��� � � � ���F��n

���
���

���
���

��nFn�� ��nFn�� � � � �� �nFn�n

�
CCCA
�
BBB�

B�

B�

���
Bn

�
CCCA �

�
BBB�

E�

E�

���
En

�
CCCA �

The values �i are dependent on the surface types� The hard thing to compute are the values
of Fi�j� It can be shown that there is a fairly simple geometric interpretation of Fi�j� We break
the i�th patch into small di�erential elements� For each element we consider a hemisphere
surrounding this element� and project patch j onto this hemisphere through its center� We
then project this projection orthographically onto the base circle of the hemisphere� The value
of Fi�j is the area of this projection� divided by the area of the circle� Thus intuitively patches

���

Lecture Notes CMSC ���

that occupy a larger 	eld of view contribute more to Fi�j and patches that are more nearly
orthogonal to the surface contribute more�

Computing this orthogonal projection of a spherical projection is somewhat tricky �considering
that it must be repeated for every tiny element of every patch�� so it is important to speed this
computation up� at the cost of the introduction of approximation errors� We can approximate
the hemisphere by a hemicube� and discretize the surface of the hemicube into square �pixel�
like� elements� We project all the surrounding patches onto each of the faces of the hemicube�
�Note that this is essentially a visible surface elimination task� which can be solved with
hardware assistance� e�g� using a z�bu�er algorithm�� Each cell of the hemicube is now
associated with a patch� and we apply a weighting factor that depends on the square of the
hemicube� and sum these up�

Needless to say� this process is extremely computationally intensive� We are basically solving
a visible surface determination problem at every point on the surface of our objects� Much of
the research in radiosity is devoted to mechanisms to save computations� without sacri	cing
realism�

���

