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Ideal model is implicit
Given a region Q C R?, define the indicator function 1q : R> — {0, 1}

1, peQ
1Q(P){O b

Ak.a. characteristic function xa(p) = 1a(p)

Alternatively, using the Iverson bracket, [p € Q] = 1q(p), where
[true] =1 and [false] =0
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INSIDE-OUTSIDE TEST

Simple shapes can be defined as primitives
[(p, r) < 0], p,reRP?
[f(x,y) < 0], fe€RxY]
[lp—cl<r], p,ceR’
[p=spi+tpp+(1-s—t)ps A 0<s,t<1], s,teR,p eR
Complex shapes can be defined by logical expressions
[{p, r) < O] A=[lp—c| <]

Basis of CSG (constructive solid geometry)
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More common to define interior by boundary (Jordan curve theorem)
Let 9Q2 denote the boundary of region Q

Let w(092, p) count the number of signed intersections with boundary
00 when we move from p to infinity in any direction

w(0%, p) is the winding number of the boundary 9Q around point p
Define interior by odd or non-zero winding numbers
(w(99,p) =1 (mod 2)] or (w(89,p) # 0]
In a sense, the definition is still implicit
But the “function” involves a complicated decision procedure

How do we define the boundary?
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PLANAR PARAMETRIC CURVE

Piecewise differentiable function o : | ¢ R — R? from an interval | to R?
t— a(t) = (x(t),y(t))

X,y are the coordinate functions of a
When | = [a, b], we say the curve « Is closed if a(a) = «(b)

a:[0,27] = R? a(t) = (rcost,rsint)
The trace «a(l) is image of | through «. It is the trace that we care about
A subset S c R? is parametrized by « if there is | € R such that /) = S
A subset S C R? can be parametrized in many different ways

B:la,b] R B(t) = (reos(wt + ), rsin(wt + ¢)), b-a> 2;”
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REGULARITY, VELOCITY, AND TANGENT

Let o : | — R? be a parameterization of S C R%.

The velocity vector is &/(t) = (x'(t),y’(t))

A regular point a(t) is a point where /(t) exists and /(t) # 0
- What if «/(t) = 0?

A'is curve ais regular in J C I if all points in «(J) are regular

The speed is given by v(t) = ||a/(t)]]

If a(t) is regular, T(t) = &/(t)/v(t) is the unit tangent to «

Are SVG paths regular?

Are individual SVG segments regular?
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ARC LENGTH

The arc-length of a curve segment « : [a, b] — R? is

b
s= /a o (8)] dt

- Makes sense from physics’ time integral of speed
- Also makes sense from rectification

Not all curves have a length
- Eg at) =tsin(1/t), te]0,1]
- Koch snowflake

VAN 2 PO VPN dh PO,
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REPARAMETERIZATION

A curve 3 :J — R?is a reparameterization of « if there is a monotonic
differentiable function h: / — I such that 8 =aoh

- A positive reparameterization has h’(J) C Rsg
- A negative reparameterization has h’(J) € R«

The arc-length is invariant to reparameterizations 3 : [c,d] — R?

d d
/C 18/(t)] dt = / o/ (h(1))] M (1) ot
b
:/a o/(u)[du  (u=h(t))
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Leta: (a,b) — R? be a curve. The arc-length function of « is defined by

/\a )| dt

Every regular curve admits an arc-length reparameterization

Regularity means s'(t) = |&/(t)| > 0, which means s(t) is strictly
increasing, which means s has a differentiable inverse u with

V= o]
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Consider 8=aou
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ARC-LENGTH REPARAMETERIZATION

Leta: (a,b) — R? be a curve. The arc-length function of « is defined by

/\a )| dt

Every regular curve admits an arc-length reparameterization

Regularity means s'(t) = |&/(t)| > 0, which means s(t) is strictly
increasing, which means s has a differentiable inverse u with

N L
Cs'(ut) o (u(D)|
Consider 8=aou ,
B'()] = |o (u(t) U'(1)] = m =1

We get

t
:/ |8'(t)|dt=t—c
C 9
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ARC-LENGTH REPARAMETERIZATION

This is easier said than done
Canonic parabola y? = 4ax with focus at (a, 0) and directrix x = —a
a(t) = (at?,2at) =
o/ (t)| = 2av/1 + 12
t
/ |o/()| dt = atv/+1+alog (VE+1+1)
0

Standard ellipse
B(t) = (acost,bsint) =

18'(t)] = by/1—msin?(t), m=1-9

t
/ |8'(t)| dt = Elliptic integral of the second kind
0

10
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CURVATURE

Let 5(t) be an arc-length parameterization
T(t) = A'(t) is the unit tangent to
T'(t) = p"(t) is normal to 8
(T, 7)) =1 = (T, T(1) =0

K(t) = |T'(t)| is the curvature of 8

p(t) = / (t) is the radius of curvature of 3

k(t) an ( ) measure the way curve g is turning
N(t) = T'(t)/|T'(t)| is the unit normal to 3

n
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If 8 is an arc-length parameterization,
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Then define the signed curvature
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(1) = L@ X (W)
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Either way, the center of curvature for a curve « is at a(t) + p(t)N(t)
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CURVATURE

For planar curves, the normal N(t) as the right-hand rotation of T(t)

Then define the signed curvature
(1) = a/(u) x o/3’(u)
o/ (u)]
Either way, the center of curvature for a curve « is at a(t) + p(t)N(t)
The osculating circle has the center and radius of curvature

An inflection is a point where the curvature vanishes

l.e. where the 1st and 2nd derivatives are collinear

13
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STROKING

A different way of specifying the interior

Given a curve a: | — R? and a stroke width w € R, we can define
endpoints p1, p, € R?

pi(t) = a(t) + ¥N(t) and pa(t) = a(t) — ¥ N(Y)
We can then define the line segment
0(t) = [(1=u) pa(t) + upa(t),0 < u < 1] (1)
The stroked region is [p € £(t),t € []
How to decide if point p belongs to the stroked curve segment?

Dashing requires the arc length

14
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/ /!
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BEZIER CURVES

Find a simple formula for the curvature att =0

Let curve «a(t) have endpoints po, p1, P2, - .-, Pn

a'(0) = n(p1 —po) and ”(0) = (n—"1)n((p2 —p1) — (P1 — Po))
a/(0) x a"(0)

k(0) =
(0) ()]
_ n=1(p1—po) x (P2 —p1)
n |p1 — pol?
_n—1ﬁ
n a?

How would you compute the arc length? [Jittler, 1997]

Show offset and evolute curves

15
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