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COLOR AND COMPOSITING



THE PRISM EXPERIMENT
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MORE THAN VISIBLE LIGHT

Visible light: prism experiment (Newton, 1666)
Infrared light: thermometers (Herschel, 1800)
Ultraviolet light: silver chloride (Ritter, 1801)



FULL ELECTROMAGNETIC SPECTRUM
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RADIOMETRY

Measurement of radiant energy in terms of absolute power

Wave vs. particle
- Wavelength (\), frequency (v = ), and amplitude (A)
- Energy (E = hv, where h is Planck’s constant) and flux (&)

Pure spectral light (monochromatic colors)

Spectrometer
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COLORS ARE SPECTRAL DISTRIBUTIONS
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SPECTRAL REPRESENTATION

As a continuous function of ¢(A)

CZR>0—>R20, )\I—>A)\

As a discrete set of values c()))
C: {Aq,)\z,...,AH} C Ryp — RZO Aj '—)A,\[

Light emitter has a spectrum, material properties modulate the
reflected spectrum (Fluorescence is something else)



BLACK-BODY RADIATION

- 1)*1, where kg is Boltsmann’s constant
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PHOTOMETRY

Measurement light in terms of perceived brightness to human eye

Visible light A € [390nm, 700nm] approximately
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PHOTOPIC VISION

Well-lit conditions
Cones: Three types of retinal cells with distinct spectral responses
Highly concentrated on fovea

Response curves S (short A), M (medium A), L (long \)
- Peaks at A = 420nm, A\ = 534nm, and A\ = 564nm
- Overlap each other
- Not R, G, and B

What about the color-blind?

Are there tetrachromats among us?
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SCOTOPIC VISION

Low-light conditions
Rods: One type of retinal cell

Mostly peripheral

20x more numerous, 1000x more sensitive than cones
Response curve

- R: peak at A = 498nm (between S and M)

Things look “gray-bluish” at night

n



HUMAN PHOTORECEPTOR DISTRIBUTION
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LUMINOUS EFFICIENCY FUNCTION

Spectral sensitivity V(X) of human perception of brightness
Different for photopic and scotopic vision
Immense dynamic range 1:10'° (brightness adaptation)

Convert radiant intensity (W/sr) to luminous intensity (cd)

v(c) = /A COIV(A)dA

13



PHOTOPIC LUMINOUS EFFICIENCY FUNCTION

Photopic luminous efficiency function
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LIGHTNESS

Nonlinear perceptual response to brightness
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LIGHTNESS

Nonlinear perceptual response to brightness

Power law
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- Convex combinations of monochromatic colors
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MODELING COLOR PERCEPTION

1st attempt: Measure spectral distribution of stimulus
- Convex combinations of monochromatic colors
- Could use spectrophotometer to measure c(\).
- But how to would you reproduce it?

2nd attempt: Measure optical nerve response
- Remove eye, attach wires to cones: The Matrix
- Re-inject signal to reproduce
- Painful, but only 3 values per color
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MODELING COLOR PERCEPTION

3rd attempt: Linear algebra

Measuring
- ¢c()) is the target color's spectral distribution
- L(A), M(A), and S(A) the spectral sensitivities for the cones
- Inner-product functions f and g is

f.0= [ " F(\)g(N)dA

- The cone responses to ¢ must be
Sc={c, S), Mc = (c, M), and Lce={c, L)

19



CONE SPECTRAL SENSITIVITIES (NOT TO SCALE)
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MODELING COLOR PERCEPTION

Reproduction
- Assume 3 different stimuli colors r(\), g(\), and b(\)
- Find stimuli intensities R, Gc and B, that correspond to ¢
- lLe, intensities that reproduce responses S, M¢, and L

(Rer+Geg+Bcb,S) =S¢ S Sg Sy [Re S.
<RCI’+GCQ+BC b, M> :MC = Mr Mg Mb GC — MC
<RC r—+ GC g + BC b, L> = I—C Lr LQ Lb BC LC

Stimuli must be linearly independent

Result R, G¢, or B. could be non-convex
- There is no negative light...

21
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SPACE OF VISIBLE COLORS

All convex combinations of visible monochromatic colors
- Could use entire spectrum

Unnecessary (most of the time) due to metamerism
- Different spectra result in same perceived color [S M L]
- E.g,cand Rer + Geg + Bcb

Obtain R¢, G¢, and B¢ directly from ¢ and RGB color matching functions
RC = <C, R> GC = <C7 G> BC - <C, B>

How to measure color matching functions R, G, and B

22



CIE 1931 RGB COLOR MATCHING FUNCTIONS

RGB color matching functions
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XYZ COLOR MATCHING FUNCTIONS

Visible colors always use non-negative coordinates

Linear transformation to R, G, B

Y is the photopic luminosity function

Equal-energy radiator (constant SPD in visible spectrum, illuminant E)

i 11 1

Z ended up almost equalto S

2%



XYZ COLOR MATCHING FUNCTIONS

XYZ color matching functions
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CIE CHROMATICITY DIAGRAM

Similar to RP?
- Given a > 0, [ax aY aZ] have same chromaticity
- Different brightness
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CIE CHROMATICITY DIAGRAM

Similar to RP?
- Given a > 0, [ax aY aZ] have same chromaticity
- Different brightness

Separation of chromaticity and brightness
X Y

= ——m— =
X+Y+z Y = XTv+z

26



CIE CHROMATICITY DIAGRAM

C.1.E. 1931 Chromaticity Diagram
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CIE CHROMATICITY DIAGRAM

Horseshoe shape

Locus of monochromatic colors
Locus of black-body colors
Line of purples

Color gamut

Color calibration and matching
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OTHER COLOR SPACES

SRGB [IEC Project Team 61966, 1998]

R v(Re) Ry 3.2406  —1.5372 —0.4986| [Xpes
G| = [v(Go)|, |Gi|=|-09689 1.8758  0.0415 | |Ypes
B v(By) B, 0.0557 —0.2040 1.0570 | |Zpes
12.92u u < 0.0031308
y(u) =

1.055u"/24 — 0.055 otherwise
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OTHER COLOR SPACES

SRGB [IEC Project Team 61966, 1998]

R v(Re) Ry 3.2406  —1.5372 —0.4986| [Xpes
G| = [v(Go)|, |Gi|=|-09689 1.8758  0.0415 | |Ypes
B v(By) B, 0.0557 —0.2040 1.0570 | |Zpes
12.92u u < 0.0031308
y(u) =

1.055u"/24 — 0.055 otherwise

Munsel (HSV and HSL)
Additive (CMY and CMYK)
TV (PAL YUV, NTSC YIQ)
Perceptual (CIE L*a*b*)

Opponent color models 2
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SEMINAL WORK BY PORTER AND DUFF [1984]

Semitransparent color f on top of opaque background color b

7 _panT wn
yF
/
/

inderside

- Assume probability of light hitting f is a
- Reflected color (integrated over small area) is

fra®db=aof +(1—a)b
- This is what we call alpha blending or the over operator 30



COMPOSITING

Now imagine f1, a1 on top of f,, a on top of b
- Reflected color is

fi,a1 @ (f2,02 ® b) = aufy + (1 — an) (eaf2 + (1 — a2)b)
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COMPOSITING

Now imagine f1, a1 on top of f,, a on top of b
- Reflected color is
fi,a1 @ (f2,02 ® b) = aufy + (1 — an) (eaf2 + (1 — a2)b)

Can we combine f1, aq and f,, ap into a single material f, a?
of + (1—a)b=aft + (1 — ar) (cfa + (1 — a2)b)
=oafi + (1 —ar)af + (1—aq)(1 — ap)b

So we have
(1T—a)b=(1—-a)(1— )b N a=a1+(1— )
of = aqfi + (1 — ar)awfz of = afi + (1 — an)afz

31



COMPOSITING

(1—a)b=(1—a1)(1—a)b N a=a1+(1—a)w
af = aifi + (1 — ar)afz of = afi + (1 — ar)fz
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COMPOSITING

(1—a)b=(1—a1)(1—a)b N a=a1+(1—a)w
af = aifi + (1 — ar)afz of = afi + (1 — ar)fz

Setting f = of, fi=asfs, andfo = axfp, we obtain
a=a+ (1—a)a
f=h+0-af

This is what we call pre-multiplied alpha

Blending becomes associative
fioar @ (o,aa @ b) = (fi, 1 @ fo,00) ® b
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COMPOSITING

(1—a)b=(1—a1)(1—a)b N a=a1+(1—a)w
af = aifi + (1 — ar)afz of = afi + (1 — ar)fz

Setting f = of, fi=asfs, andfo = axfp, we obtain

a=a+ (1—a)a
f=h+(-a)s

This is what we call pre-multiplied alpha
Blending becomes associative

fi, v @(fz,gz@b) = (121,041 @fz,az)@b

Should we blend front-to-back or back-to-front?

32
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