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REPARAMETERIZATION

Given a Bézier curve segment ~"(t), with control points {po,...,Pn},
and a reparameterization t — (1 — u)r + us, how can we obtain the
control points {qo, ..., qn} for the curve segment piece fy[”, S](u)?

W) =7"((1 = u)r+us) =4"(a+bu), for a=r, b=s—r

Y"(@+bu)=[po -+ pa|Ba(a+bu)=CPByPo(a+ bu)
i 1 i
a+bu
Pa(a + bu) = a? +2abu + b? u?

[(5)a" + -+ (a"blu - ()b u")
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()" (Ha"b (§a"2b* - ()b"] Lu"]

= Map Pn(U)
rg(U) =~"(a+ bu)
= CBB, Py(a+ bu)
= CBBn M, p Pn(u)
= C®Bn M, By ' Bn(U)

G0+ Qo] =CPBaMap By
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Let p : R — R be a degree-n polynomial, and let P: R” —+ R

Every polynomial p can be associated to a blossom P as follows
- Symmetry: P(t1,t2, ..., th) = P(tr, tryy - - -5 )
- Multi-affinity: P(1—a)u+av,...) =(1—a)P(u,...) + aP(v,...)
- Diagonal property: P(t,t,...,t) = p(t)
Correspondence is unique
We want to reparameterize p(t) for t — r(1—u) +su
Evaluate p(r(1— u) + su) using the blossom instead
p(r(1=u)+su) =P(r(1—u)+su,r(1—u)+su,...)
=) =uw"pP(r,r,r,.. )+ (DO =) uP(s,r,r,. )
+ () =) P(s,s,r,. ) + -+ (U P(s, S, S, - . )

4



BLOSsOMS

Rewriting,

n n—i

p(r(1—u)+su) = 2 (M@ =t)""t'P(s,...,s,7...,1)



BLOSsOMS

Rewriting,
n n—i
p(rl—=u)+su)=>» (HO-0)""t'P(s,...,s,7...,7)

= —

i

But this is simply p(r(1 —Uu)+ su) written in Bernstein basis!



BLOSsOMS

Rewriting,
n

p(r(1—u) +su) = 2 (M@ —t)"'t P(s,....,s,r...,r)

But this is simply p(r(1 —Uu)+ su) written in Bernstein basis!

(M=

P(s,...,s,T...,r) must be ith control point for pj. 4(u)
H{,—/
!



BLOSsOMS

Rewriting,
n

p(r(1—u)+su) = 2 (Ha =)'t P(s,....,s,r...,r)

But this is simply p(r(1 —Uu)+ su) written in Bernstein basis!
n—i

P(s,...,s,T...,r) must be ith control point for pj. 4(u)
H(_/ '
! n—i
Settingr=0ands=1,P(1,...,1,0,...,0) is ith control point for p(t)
—
|



BLOSsOMS

Rewriting,
n n—i
p(rl—=u)+su)=>» (HO-0)""t'P(s,...,s,7...,7)

- !

But this is simply p(r(1 —Uu)+ su) written in Bernstein basis!
n—i
P(s,...,s,T...,r) must be ith control point for pj. 4(u)

N——
i (=l

Settingr=0ands=1,P(1,...,1,0,...,0) is ith control point for p(t)
—
|

From them, we can evaluate the blossom P(ty, ta, ..., tn)
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DE CASTELJOU USING BLOSSOMS

n—i n—(i+1)

P(1,...,1,0,...,0)and P(1,...,1,0,...,0) differ only in entry |
~—— ~——

i i+1
n—i n—(i+1)
—
a—t)P(,...,1,0,....0) + t:P(1,...,1,0,...,0) =
——
i Al

,—/h . .
=P(1,...,1,4,0,...,0) (multi-affinity)
N——
—
= P(t1,1,...,1,0,...,0) (symmetry)
——

Repeat for ty, ..., t, until we reach P(ty, tp, ..., tn)

Easier way to perform affine reparameterization!
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Using affine reparameterization or blossoms

Sometimes needed
- To make sure all segments are monotonic
- To make sure no segment has a double point or an inflection point
- To divide an integral into two parts
- To flatten a segment
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Curve is y(t) = (x(t),y(t))

Horizontal ray is r(u) = (xr + u,yr), foru >0

Solve y(t) =y, for t

For each solution ¢;, check that 0 <'t; <1 and that x, < x(t;)

What could go wrong?
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MONOTONIZATION OF BEZIER SEGMENTS

Solve for y/(t) = 0 and x/(t) = 0 for t

Sort solutions t; <t < --- < tp

Split original at corresponding parameters
Endpoints form tight bounding boxes

Axis aligned rays can intersect only once
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Use bounding box (Xmin, Ymins Xmaxs Ymax)
Yy > Vmax Or Yr <VYmin — NO Intersection
- Otherwise, if Xy > Xmax —  NO intersection
- Otherwise, if xr < X, —  Intersection
- Otherwise, must test!

Inside the box, use bisection to solve y(t;) =y, for ¢
- There is a solution t; € [0,1]

Check that x, < x(t;)

10
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FLATTENING OF BEZIER SEGMENTS

Recursively subdivide segments until the polyline connecting the
interpolation points forms a good approximation for the curve

Sometimes needed
- If output driver does not support curves
- Simple way to approximate length of a segment

Show in Mathematica

n
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EVERY INTEGRAL QUADRATIC BEZIER SEGMENT IS A PARABOLA

There is T affine that maps any quadratic Bézier to y = x?

x(t) t 0 1 1] [(1—1)?
y(t)| = |2 = [0 0 1| [2(1—t)t| = CBy(t)
1 1 17 1 1 t?
Xo X1 Xo 0 7 1 0 3 1| [x x1 X -
T(Yo Yo Y2 =10 0 1 = T=10 0 1| |Yo ¥1 Y2
1T 1 1 1T 1 1 1T 1 1|1 1 1

How can we tell T is affine?
[O 0 1]A:v = vA‘1:[O 0 1}

[o 0 T}B:v N [o 0 1}BA—“:vA—“:[o 0 1}
12
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Start with the unit circle in first quadrant
Obvious parameterization is

.
~(t) = [cost sint} , for tel0,5

But

cos?t —sin?t 1 —tan?l

2 2 _ 2

cost = T TE = :

sint +cos?2t 14tan?i

2 2 2

. 2sinLcosi 2tan &

sint = — 2 Zt = z

2t 2t 2t
sin” 5 + cos® 5 1+ tan‘ 3
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RATIONAL POLYNOMIAL PARAMETERIZATION OF UNIT CIRCLE

Start with the unit circle in first quadrant
Obvious parameterization is
.
~(t) = [cost smt} , for tel0,5

But .
cosz%—smz% 1—tan2% T—u
cost = ——~ 7t 27t 2
sin® 5 + cos* 5 1+ tan‘ 3 T+u

oot t t
L 2S|n§cosj B 2tanj B 2U
sinl = —— t 2t 2

sin®5 +cos?5  T+tan?3 14U

2

So we also have

)
2
W)= |EL 2], for uelo]

13
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In the projective plane, using homogeneous coordinates, we have
T T
y(u) = [x(u) y(u) W(u)} = [1 —u? 2u 1+ uz} , foruel0,1]

Reparameterize to make more symmetrical u — (1—Vv)tan§ 4+ vtan §

cosaw  2(1—cosa) —2(1— cosa)
y(v) = | —sina 2sin 0 P,(v)
1 —2(1—=cosa) 2(1— cosa)

Covert to Bernstein basis

CoS v 1 Cos &
(V)= |=sina 0 sina| ByVv)
1 CoSs & 1

We will call this the canonical arc segment
14
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PROJECTIVE REPARAMETERIZATION

Recall our affine reparameterization was of the form
t—a-+bu

Polynomials are closed under affine reparameterizations
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Given control points p; = [x,- Vi vv,-], can we trace the same curve but
use control points p; = [xj v WI/] such that wj = wy, = 1?

Use a projective reparameterization that maps [0, 1] to [0, 1]

Result is pf = A"=/p;

In particular, wj = XN'wp and wy, = wy,

Set wj = wj, and solve for A Nwo =wp, = { ‘x—g

Requires wy # 0, wp # 0 and either w,/wp > 0 or n odd

If so, apply reparameterization and then divide by wj,
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Parabola, ellipse, or hyperbola?
Points-with-weight interpretation
Projective invariance of rational Bézier segments

How to complement a rational Bézier segment?
- Easy for circular arcs
- By projective reparameterization
- Parametrization issues

How to find the affine transformation that maps the unit circle into a
given rational quadratic Bézier segment?
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