# **2D COMPUTER GRAPHICS**

Diego Nehab Summer 2020

**IMPA** 

# More on Bézier curves

Given a Bézier curve segment  $\gamma^n(t)$ , with control points  $\{p_0, \ldots, p_n\}$ , and a *reparameterization*  $t \mapsto (1-u)r + us$ , how can we obtain the control points  $\{q_0, \ldots, q_n\}$  for the curve segment piece  $\gamma^n_{[r,s]}(u)$ ?

Given a Bézier curve segment  $\gamma^n(t)$ , with control points  $\{p_0, \dots, p_n\}$ , and a *reparameterization*  $t \mapsto (1-u)r + us$ , how can we obtain the control points  $\{q_0, \dots, q_n\}$  for the curve segment piece  $\gamma^n_{[r,s]}(u)$ ?

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}((1-u)r + us) = \gamma^{n}(a+bu), \text{ for } a=r, b=s-r$$

Given a Bézier curve segment  $\gamma^n(t)$ , with control points  $\{p_0, \ldots, p_n\}$ , and a *reparameterization*  $t \mapsto (1-u)r + us$ , how can we obtain the control points  $\{q_0, \ldots, q_n\}$  for the curve segment piece  $\gamma^n_{[r,s]}(u)$ ?

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}((1-u)r + us) = \gamma^{n}(a+bu), \quad \text{for} \quad a=r, \quad b=s-r$$
$$\gamma^{n}(a+bu) = \begin{bmatrix} p_{0} & \cdots & p_{n} \end{bmatrix} B_{n}(a+bu) = \mathbf{C}^{\mathbf{B}} \mathbf{B}_{\mathbf{n}} P_{n}(a+bu)$$

Given a Bézier curve segment  $\gamma^n(t)$ , with control points  $\{p_0, \dots, p_n\}$ , and a *reparameterization*  $t \mapsto (1-u)r + us$ , how can we obtain the control points  $\{q_0, \dots, q_n\}$  for the curve segment piece  $\gamma^n_{[r,s]}(u)$ ?

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}((1-u)r + us) = \gamma^{n}(a+bu), \quad \text{for} \quad a=r, \quad b=s-r$$
$$\gamma^{n}(a+bu) = \begin{bmatrix} p_{0} & \cdots & p_{n} \end{bmatrix} B_{n}(a+bu) = \mathbf{C}^{\mathbf{B}} \mathbf{B}_{\mathbf{n}} P_{n}(a+bu)$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & \\ & a + bu & & \\ & a^{2} + 2ab u + b^{2} u^{2} & & \\ & \vdots & & \\ \binom{n}{0}a^{n} + \dots + \binom{n}{i}a^{n-i}b^{i} u^{i} + \dots \binom{n}{n}b^{n} u^{n} \end{bmatrix}$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & \\ a & b & & & & \\ a^{2} & 2ab & b^{2} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & \\ a & b & & & & \\ a^{2} & 2ab & b^{2} & & \\ \vdots & \vdots & \vdots & \ddots & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$
$$= \mathbf{M}_{\mathbf{a},\mathbf{b}} P_{n}(u)$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & \\ a & b & & & & \\ a^{2} & 2ab & b^{2} & & \\ \vdots & \vdots & \vdots & \ddots & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$

$$= M_{a,b} P_{n}(u)$$

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}(a + bu)$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & & \\ a & b & & & & \\ a^{2} & 2ab & b^{2} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$

$$= M_{a,b} P_{n}(u)$$

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}(a + bu)$$

$$= C^{B} B_{n} P_{n}(a + bu)$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & & & \\ a & b & & & & & \\ a^{2} & 2ab & b^{2} & & & & \\ \vdots & \vdots & \vdots & \ddots & & & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$

$$= \mathbf{M}_{\mathbf{a},\mathbf{b}} P_{n}(u)$$

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}(a + bu)$$

$$= \mathbf{C}^{\mathbf{B}} \mathbf{B}_{\mathbf{n}} P_{n}(a + bu)$$

$$= \mathbf{C}^{\mathbf{B}} \mathbf{B}_{\mathbf{n}} \mathbf{M}_{\mathbf{a},\mathbf{b}} P_{n}(u)$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & & \\ a & b & & & & \\ a^{2} & 2ab & b^{2} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$

$$= M_{a,b} P_{n}(u)$$

$$\gamma_{[r,s]}^{n}(u) = \gamma^{n}(a + bu)$$

$$= C^{B} B_{n} P_{n}(a + bu)$$

$$= C^{B} B_{n} M_{a,b} P_{n}(u)$$

$$= C^{B} B_{n} M_{a,b} B_{n}^{-1} B_{n}(u)$$

$$P_{n}(a + bu) = \begin{bmatrix} 1 & & & & & & & & \\ a & b & & & & & \\ a^{2} & 2ab & b^{2} & & & & \\ \vdots & \vdots & \vdots & \ddots & & & \\ \binom{n}{0}a^{n} & \binom{n}{1}a^{n-1}b & \binom{n}{2}a^{n-2}b^{2} & \cdots & \binom{n}{n}b^{n} \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^{2} \\ \vdots \\ u^{n} \end{bmatrix}$$

$$= M_{a,b} P_{n}(u)$$

$$= M_{a,b} P_{n}(u)$$

$$= C^{B} B_{n} P_{n}(a + bu)$$

$$= C^{B} B_{n} P_{n}(a + bu)$$

$$= C^{B} B_{n} M_{a,b} P_{n}(u)$$

$$= C^{B} B_{n} M_{a,b} B_{n}^{-1} B_{n}(u)$$

$$[q_{0} \cdots q_{n}] = C^{B} B_{n} M_{a,b} B_{n}^{-1}$$

Let  $p: \mathbb{R} \to \mathbb{R}$  be a degree-n polynomial, and let  $P: \mathbb{R}^n \to \mathbb{R}$ 

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Let  $p : \mathbb{R} \to \mathbb{R}$  be a degree-*n* polynomial, and let  $P : \mathbb{R}^n \to \mathbb{R}$ 

• Symmetry: 
$$P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$$

Let  $p : \mathbb{R} \to \mathbb{R}$  be a degree-*n* polynomial, and let  $P : \mathbb{R}^n \to \mathbb{R}$ 

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Every polynomial p can be associated to a blossom P as follows

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Correspondence is unique

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Every polynomial p can be associated to a blossom P as follows

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Correspondence is unique

We want to reparameterize p(t) for  $t \mapsto r(1-u) + su$ 

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Every polynomial p can be associated to a blossom P as follows

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Correspondence is unique

We want to reparameterize p(t) for  $t \mapsto r(1-u) + su$ 

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Every polynomial p can be associated to a blossom P as follows

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Correspondence is unique

We want to reparameterize p(t) for  $t \mapsto r(1-u) + su$ 

$$p(r(1-u)+su)$$

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Every polynomial p can be associated to a blossom P as follows

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Correspondence is unique

We want to reparameterize p(t) for  $t \mapsto r(1-u) + su$ 

$$p(r(1-u) + su) = P(r(1-u) + su, r(1-u) + su,...)$$

Let  $p : \mathbf{R} \to \mathbf{R}$  be a degree-n polynomial, and let  $P : \mathbf{R}^n \to \mathbf{R}$ 

Every polynomial p can be associated to a blossom P as follows

- Symmetry:  $P(t_1, t_2, ..., t_n) = P(t_{\pi_1}, t_{\pi_2}, ..., t_{\pi_n})$
- Multi-affinity:  $P((1-\alpha)u + \alpha v, ...) = (1-\alpha)P(u,...) + \alpha P(v,...)$
- Diagonal property: P(t, t, ..., t) = p(t)

Correspondence is unique

We want to reparameterize p(t) for  $t \mapsto r(1-u) + su$ 

$$p(r(1-u) + su) = P(r(1-u) + su, r(1-u) + su, ...)$$

$$= \binom{n}{0} (1-u)^n P(r, r, r, ...) + \binom{n}{1} (1-u)^{n-1} u P(s, r, r, ...)$$

$$+ \binom{n}{2} (1-u)^{n-2} u^2 P(s, s, r, ...) + \dots + \binom{n}{n} u^n P(s, s, s, ...)$$

Rewriting,

$$p(r(1-u)+su)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i}t^{i}P(\underbrace{s,\ldots,s}_{i},\underbrace{r\ldots,r}_{i})$$

Rewriting,

$$p(r(1-u)+su)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i}t^{i}P(\underbrace{s,\ldots,s}_{i},\overbrace{r\ldots,r}^{n-i})$$

But this is simply p(r(1-u) + su) written in Bernstein basis!

Rewriting,

$$p(r(1-u)+su)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i}t^{i}P(\underbrace{s,\ldots,s}_{i},\overbrace{r\ldots,r}^{n-i})$$

But this is simply p(r(1-u) + su) written in Bernstein basis!

$$P(\underbrace{s,\ldots,s,r\ldots,r})$$
 must be ith control point for  $p_{[r,s]}(u)$ 

Rewriting,

$$p(r(1-u)+su)=\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i}t^{i}P(\underbrace{s,\ldots,s}_{i},\overbrace{r\ldots,r}^{n-i})$$

But this is simply p(r(1-u) + su) written in Bernstein basis!

$$P(\underbrace{s,\ldots,s,r\ldots,r})$$
 must be *i*th control point for  $p_{[r,s]}(u)$   
Setting  $r=0$  and  $s=1$ ,  $P(\underbrace{1,\ldots,1,0,\ldots,0})$  is *i*th control point for  $p(t)$ 

5

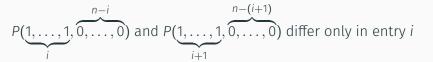
Rewriting,

$$p(r(1-u) + su) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} P(\underline{s, \dots, s}, r \dots, r)$$

But this is simply p(r(1-u) + su) written in Bernstein basis!

$$P(\underbrace{s,\ldots,s,r\ldots,r})$$
 must be ith control point for  $p_{[r,s]}(u)$   
Setting  $r=0$  and  $s=1$ ,  $P(\underbrace{1,\ldots,1,0,\ldots,0})$  is ith control point for  $p(t)$ 

From them, we can evaluate the blossom  $P(t_1, t_2, ..., t_n)$ 



$$P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{0}) \text{ and } P(\underbrace{1,\ldots,1}_{i+1},\underbrace{0,\ldots,0}_{0,\ldots,0}) \text{ differ only in entry } i$$

$$(1-t_{1})P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{0}) + t_{1}P(\underbrace{1,\ldots,1}_{i+1},\underbrace{0,\ldots,0}_{0})$$

$$P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{i}) \text{ and } P(\underbrace{1,\ldots,1}_{i+1},\underbrace{0,\ldots,0}_{0}) \text{ differ only in entry } i$$

$$(1-t_{1})P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{0}) + t_{1}P(\underbrace{1,\ldots,1}_{i-1},\underbrace{0,\ldots,0}_{0}) =$$

$$= P(\underbrace{1,\ldots,1}_{i-1},t_{1},\underbrace{0,\ldots,0}_{0}) \quad \text{(multi-affinity)}$$

$$P(\underbrace{1,\ldots,1},\overbrace{0,\ldots,0}^{n-i}) \text{ and } P(\underbrace{1,\ldots,1},\overbrace{0,\ldots,0}^{n-(i+1)}) \text{ differ only in entry } i$$

$$(1-t_1)P(\underbrace{1,\ldots,1},\overbrace{0,\ldots,0}^{n-i}) + t_1P(\underbrace{1,\ldots,1},\overbrace{0,\ldots,0}^{n-(i+1)}) = P(\underbrace{1,\ldots,1},t_1,\overbrace{0,\ldots,0}^{n-(i+1)}) \text{ (multi-affinity)}$$

$$= P(t_1,\underbrace{1,\ldots,1},\overbrace{0,\ldots,0}^{n-(i+1)}) \text{ (symmetry)}$$

$$P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{i}) \text{ and } P(\underbrace{1,\ldots,1}_{i+1},\underbrace{0,\ldots,0}_{0,\ldots,0}) \text{ differ only in entry } i$$

$$(1-t_{1})P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{i}) + t_{1}P(\underbrace{1,\ldots,1}_{i-1},\underbrace{0,\ldots,0}_{0,\ldots,0}) =$$

$$= P(\underbrace{1,\ldots,1}_{i-1},t_{1},\underbrace{0,\ldots,0}_{0,\ldots,0}) \quad \text{(multi-affinity)}$$

$$= P(t_{1},\underbrace{1,\ldots,1}_{i-1},\underbrace{0,\ldots,0}_{0,\ldots,0}) \quad \text{(symmetry)}$$

Repeat for  $t_2, \ldots, t_n$  until we reach  $P(t_1, t_2, \ldots, t_n)$ 

$$P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{0}) \text{ and } P(\underbrace{1,\ldots,1}_{i+1},\underbrace{0,\ldots,0}_{0}) \text{ differ only in entry } i$$

$$(1-t_{1})P(\underbrace{1,\ldots,1}_{i},\underbrace{0,\ldots,0}_{0}) + t_{1}P(\underbrace{1,\ldots,1}_{i+1},\underbrace{0,\ldots,0}_{0}) =$$

$$= P(\underbrace{1,\ldots,1}_{i+1},t_{1},\underbrace{0,\ldots,0}_{0}) \quad \text{(multi-affinity)}$$

$$= P(t_{1},\underbrace{1,\ldots,1}_{i-1},\underbrace{0,\ldots,0}_{0}) \quad \text{(symmetry)}$$

Repeat for  $t_2, \ldots, t_n$  until we reach  $P(t_1, t_2, \ldots, t_n)$ 

Easier way to perform affine reparameterization!

## SUBDIVISION OF BÉZIER SEGMENTS

Using affine reparameterization or blossoms

Using affine reparameterization or blossoms

#### Sometimes needed

· To make sure all segments are monotonic

Using affine reparameterization or blossoms

- · To make sure all segments are monotonic
- To make sure no segment has a double point or an inflection point

Using affine reparameterization or blossoms

- To make sure all segments are monotonic
- To make sure no segment has a double point or an inflection point
- To divide an integral into two parts

Using affine reparameterization or blossoms

- To make sure all segments are monotonic
- To make sure no segment has a double point or an inflection point
- To divide an integral into two parts
- · To flatten a segment

Curve is 
$$\gamma(t) = (x(t), y(t))$$

Curve is 
$$\gamma(t) = (x(t), y(t))$$
  
Horizontal ray is  $r(u) = (x_r + u, y_r)$ , for  $u > 0$ 

Curve is 
$$\gamma(t) = (x(t), y(t))$$
  
Horizontal ray is  $r(u) = (x_r + u, y_r)$ , for  $u > 0$   
Solve  $y(t) = y_r$  for  $t$ 

# Intersection between Bézier segments and rays

Curve is 
$$\gamma(t) = (x(t), y(t))$$

Horizontal ray is 
$$r(u) = (x_r + u, y_r)$$
, for  $u > 0$ 

Solve 
$$y(t) = y_r$$
 for  $t$ 

For each solution  $t_i$ , check that  $0 \le t_i \le 1$  and that  $x_r \le x(t_i)$ 

Curve is 
$$\gamma(t) = (x(t), y(t))$$

Horizontal ray is 
$$r(u) = (x_r + u, y_r)$$
, for  $u > 0$ 

Solve 
$$y(t) = y_r$$
 for  $t$ 

For each solution  $t_i$ , check that  $0 \le t_i \le 1$  and that  $x_r \le x(t_i)$ 

What could go wrong?

Solve for y'(t) = 0 and x'(t) = 0 for t

Solve for y'(t) = 0 and x'(t) = 0 for tSort solutions  $t_1 < t_2 < \cdots < t_k$ 

Solve for 
$$y'(t) = 0$$
 and  $x'(t) = 0$  for  $t$ 

Sort solutions 
$$t_1 < t_2 < \cdots < t_k$$

Split original at corresponding parameters

- Solve for y'(t) = 0 and x'(t) = 0 for t
- Sort solutions  $t_1 < t_2 < \cdots < t_k$
- Split original at corresponding parameters
- Endpoints form tight bounding boxes

- Solve for y'(t) = 0 and x'(t) = 0 for t
- Sort solutions  $t_1 < t_2 < \cdots < t_k$
- Split original at corresponding parameters
- Endpoints form tight bounding boxes
- Axis aligned rays can intersect only once

# INTERSECTION BETWEEN MONOTONIC BÉZIER SEGMENTS AND RAYS

Use bounding box  $(x_{min}, y_{min}, x_{max}, y_{max})$ 

• If  $y_r > y_{max}$  or  $y_r \le y_{min} \rightarrow$  no intersection

- If  $y_r > y_{max}$  or  $y_r \le y_{min} \rightarrow$  no intersection
- Otherwise, if  $x_r > x_{max} \rightarrow$  no intersection

- If  $y_r > y_{max}$  or  $y_r \le y_{min} \rightarrow$  no intersection
- Otherwise, if  $x_r > x_{max} \rightarrow \text{no intersection}$
- Otherwise, if  $x_r \leq x_{min} \rightarrow$  intersection

- If  $y_r > y_{max}$  or  $y_r \le y_{min} \rightarrow$  no intersection
- Otherwise, if  $x_r > x_{max} \rightarrow \text{no intersection}$
- Otherwise, if  $x_r \leq x_{min} \rightarrow$  intersection
- Otherwise, must test!

Use bounding box  $(x_{min}, y_{min}, x_{max}, y_{max})$ 

- If  $y_r > y_{max}$  or  $y_r \le y_{min} \rightarrow$  no intersection
- Otherwise, if  $x_r > x_{max} \rightarrow$  no intersection
- Otherwise, if  $x_r \leq x_{min} \rightarrow$  intersection
- · Otherwise, must test!

Inside the box, use bisection to solve  $y(t_i) = y_r$  for  $t_i$ 

• There is a solution  $t_i \in [0,1]$ 

Use bounding box  $(x_{min}, y_{min}, x_{max}, y_{max})$ 

- If  $y_r > y_{max}$  or  $y_r \le y_{min} \rightarrow$  no intersection
- Otherwise, if  $x_r > x_{max} \rightarrow$  no intersection
- Otherwise, if  $x_r \leq x_{min} \rightarrow$  intersection
- · Otherwise, must test!

Inside the box, use bisection to solve  $y(t_i) = y_r$  for  $t_i$ 

• There is a solution  $t_i \in [0,1]$ 

Check that  $x_r \leq x(t_i)$ 

Recursively subdivide segments until the polyline connecting the interpolation points forms a good approximation for the curve

Recursively subdivide segments until the polyline connecting the interpolation points forms a good approximation for the curve

Sometimes needed

If output driver does not support curves

Recursively subdivide segments until the polyline connecting the interpolation points forms a good approximation for the curve

- If output driver does not support curves
- · Simple way to approximate length of a segment

Recursively subdivide segments until the polyline connecting the interpolation points forms a good approximation for the curve

#### Sometimes needed

- If output driver does not support curves
- · Simple way to approximate length of a segment

#### Show in Mathematica

RATIONAL BÉZIER CURVES

There is **T** affine that maps any quadratic Bézier to  $y = x^2$ 

$$\begin{bmatrix} x(t) \\ y(t) \\ 1 \end{bmatrix} = \begin{bmatrix} t \\ t^2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} (1-t)^2 \\ 2(1-t)t \\ t^2 \end{bmatrix} = \mathbf{C} B_2(t)$$

There is **T** affine that maps any quadratic Bézier to  $y = x^2$ 

$$\begin{bmatrix} x(t) \\ y(t) \\ 1 \end{bmatrix} = \begin{bmatrix} t \\ t^2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} (1-t)^2 \\ 2(1-t)t \\ t^2 \end{bmatrix} = C B_2(t)$$

$$\mathbf{T} \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{T} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}^{-1}$$

There is **T** affine that maps any quadratic Bézier to  $y = x^2$ 

$$\begin{bmatrix} x(t) \\ y(t) \\ 1 \end{bmatrix} = \begin{bmatrix} t \\ t^2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} (1-t)^2 \\ 2(1-t)t \\ t^2 \end{bmatrix} = \mathbf{C} B_2(t)$$

$$T\begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \Rightarrow \quad T = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}^{-1}$$

How can we tell **T** is affine?

There is **T** affine that maps any quadratic Bézier to  $y = x^2$ 

$$\begin{bmatrix} x(t) \\ y(t) \\ 1 \end{bmatrix} = \begin{bmatrix} t \\ t^2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} (1-t)^2 \\ 2(1-t)t \\ t^2 \end{bmatrix} = \mathbf{C} B_2(t)$$

$$\mathbf{T} \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \Rightarrow \quad \mathbf{T} = \begin{bmatrix} 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_0 & x_1 & x_2 \\ y_0 & y_1 & y_2 \\ 1 & 1 & 1 \end{bmatrix}^{-1}$$

How can we tell **T** is affine?

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} A = v \quad \Rightarrow \quad vA^{-1} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} B = v \quad \Rightarrow \quad \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} B A^{-1} = vA^{-1} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

#### RATIONAL POLYNOMIAL PARAMETERIZATION OF UNIT CIRCLE

Start with the unit circle in first quadrant

#### RATIONAL POLYNOMIAL PARAMETERIZATION OF UNIT CIRCLE

Start with the unit circle in first quadrant

Obvious parameterization is

$$\gamma(t) = \begin{bmatrix} \cos t & \sin t \end{bmatrix}^{\mathsf{T}}, \quad \text{for} \quad t \in [0, \frac{\pi}{2}]$$

Obvious parameterization is

$$\gamma(t) = \begin{bmatrix} \cos t & \sin t \end{bmatrix}^T$$
, for  $t \in [0, \frac{\pi}{2}]$ 

But

$$\cos t = \frac{\cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}}$$

$$\sin t = \frac{2\sin\frac{t}{2}\cos\frac{t}{2}}{\sin^2\frac{t}{2} + \cos^2\frac{t}{2}}$$

Obvious parameterization is

$$\gamma(t) = \begin{bmatrix} \cos t & \sin t \end{bmatrix}^{\mathsf{T}}, \quad \text{for} \quad t \in [0, \frac{\pi}{2}]$$

But

$$\cos t = \frac{\cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{1 - \tan^2 \frac{t}{2}}{1 + \tan^2 \frac{t}{2}}$$

$$\sin t = \frac{2 \sin \frac{t}{2} \cos \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{2 \tan \frac{t}{2}}{1 + \tan^2 \frac{t}{2}}$$

Obvious parameterization is

$$\gamma(t) = \begin{bmatrix} \cos t & \sin t \end{bmatrix}^{\mathsf{T}}, \quad \text{for} \quad t \in [0, \frac{\pi}{2}]$$

But

$$\cos t = \frac{\cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{1 - \tan^2 \frac{t}{2}}{1 + \tan^2 \frac{t}{2}} = \frac{1 - u^2}{1 + u^2}$$

$$\sin t = \frac{2 \sin \frac{t}{2} \cos \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{2 \tan \frac{t}{2}}{1 + \tan^2 \frac{t}{2}} = \frac{2u}{1 + u^2}$$

Obvious parameterization is

$$\gamma(t) = \begin{bmatrix} \cos t & \sin t \end{bmatrix}^{\mathsf{T}}, \quad \text{for} \quad t \in [0, \frac{\pi}{2}]$$

But

$$\cos t = \frac{\cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{1 - \tan^2 \frac{t}{2}}{1 + \tan^2 \frac{t}{2}} = \frac{1 - u^2}{1 + u^2}$$

$$\sin t = \frac{2 \sin \frac{t}{2} \cos \frac{t}{2}}{\sin^2 \frac{t}{2} + \cos^2 \frac{t}{2}} = \frac{2 \tan \frac{t}{2}}{1 + \tan^2 \frac{t}{2}} = \frac{2u}{1 + u^2}$$

So we also have

$$\gamma(u) = \begin{bmatrix} \frac{1-u^2}{1+u^2} & \frac{2u}{1+u^2} \end{bmatrix}^T, \quad \text{for} \quad u \in [0,1]$$

In the projective plane, using homogeneous coordinates, we have

$$\gamma(u) = [x(u) \ y(u) \ w(u)]^{T} = [1 - u^{2} \ 2u \ 1 + u^{2}]^{T}, \text{ for } u \in [0, 1]$$

In the projective plane, using homogeneous coordinates, we have

$$\gamma(u) = [x(u) \ y(u) \ w(u)]^{T} = [1 - u^{2} \ 2u \ 1 + u^{2}]^{T}, \text{ for } u \in [0, 1]$$

Reparameterize to make more symmetrical  $u \mapsto (1 - v) \tan \frac{\alpha}{2} + v \tan \frac{\alpha}{2}$ 

$$\gamma(v) = \begin{bmatrix} \cos \alpha & 2(1 - \cos \alpha) & -2(1 - \cos \alpha) \\ -\sin \alpha & 2\sin \alpha & 0 \\ 1 & -2(1 - \cos \alpha) & 2(1 - \cos \alpha) \end{bmatrix} P_2(v)$$

In the projective plane, using homogeneous coordinates, we have

$$\gamma(u) = [x(u) \ y(u) \ w(u)]^{T} = [1 - u^{2} \ 2u \ 1 + u^{2}]^{T}, \text{ for } u \in [0, 1]$$

Reparameterize to make more symmetrical  $u \mapsto (1-v)\tan\frac{\alpha}{2} + v\tan\frac{\alpha}{2}$ 

$$\gamma(v) = \begin{bmatrix} \cos \alpha & 2(1 - \cos \alpha) & -2(1 - \cos \alpha) \\ -\sin \alpha & 2\sin \alpha & 0 \\ 1 & -2(1 - \cos \alpha) & 2(1 - \cos \alpha) \end{bmatrix} P_2(v)$$

Covert to Bernstein basis

In the projective plane, using homogeneous coordinates, we have

$$\gamma(u) = [x(u) \ y(u) \ w(u)]^{T} = [1 - u^{2} \ 2u \ 1 + u^{2}]^{T}, \text{ for } u \in [0, 1]$$

Reparameterize to make more symmetrical  $u \mapsto (1 - v) \tan \frac{\alpha}{2} + v \tan \frac{\alpha}{2}$ 

$$\gamma(v) = \begin{bmatrix} \cos \alpha & 2(1 - \cos \alpha) & -2(1 - \cos \alpha) \\ -\sin \alpha & 2\sin \alpha & 0 \\ 1 & -2(1 - \cos \alpha) & 2(1 - \cos \alpha) \end{bmatrix} P_2(v)$$

Covert to Bernstein basis

$$\gamma(v) = \begin{bmatrix} \cos \alpha & 1 & \cos \alpha \\ -\sin \alpha & 0 & \sin \alpha \\ 1 & \cos \alpha & 1 \end{bmatrix} B_2(v)$$

In the projective plane, using homogeneous coordinates, we have

$$\gamma(u) = [x(u) \ y(u) \ w(u)]^{T} = [1 - u^{2} \ 2u \ 1 + u^{2}]^{T}, \text{ for } u \in [0, 1]$$

Reparameterize to make more symmetrical  $u \mapsto (1 - v) \tan \frac{\alpha}{2} + v \tan \frac{\alpha}{2}$ 

$$\gamma(v) = \begin{bmatrix} \cos \alpha & 2(1 - \cos \alpha) & -2(1 - \cos \alpha) \\ -\sin \alpha & 2\sin \alpha & 0 \\ 1 & -2(1 - \cos \alpha) & 2(1 - \cos \alpha) \end{bmatrix} P_2(v)$$

Covert to Bernstein basis

$$\gamma(v) = \begin{bmatrix} \cos \alpha & 1 & \cos \alpha \\ -\sin \alpha & 0 & \sin \alpha \\ 1 & \cos \alpha & 1 \end{bmatrix} B_2(v)$$

We will call this the canonical arc segment

Recall our affine reparameterization was of the form

$$t \mapsto a + bu$$

Recall our affine reparameterization was of the form

$$t \mapsto a + bu$$

Polynomials are closed under affine reparameterizations

Recall our affine reparameterization was of the form

$$t \mapsto a + bu$$

Polynomials are closed under affine reparameterizations

We can now apply a projective reparameterization

$$t \mapsto \frac{a + bu}{c + du}$$

Recall our affine reparameterization was of the form

$$t \mapsto a + bu$$

Polynomials are closed under affine reparameterizations

We can now apply a projective reparameterization

$$t \mapsto \frac{a + bu}{c + du}$$

Also known as a Möbius transformation

Recall our affine reparameterization was of the form

$$t \mapsto a + bu$$

Polynomials are closed under affine reparameterizations

We can now apply a projective reparameterization

$$t \mapsto \frac{a + bu}{c + du}$$

Also known as a Möbius transformation

Rational polynomials are closed under projective reparameterizations

In particular, those for which  $[0,1] \mapsto [0,1]$ 

$$t \mapsto \frac{a + bu}{c + du}$$

(general case)

In particular, those for which  $[0,1] \mapsto [0,1]$ 

$$t\mapsto \frac{a+bu}{c+du}$$
 (general case) 
$$t\mapsto \frac{bu}{c+du}$$
 (0 \rightarrow 0 \Rightarrow a = 0)

In particular, those for which  $[0,1] \mapsto [0,1]$ 

$$t \mapsto \frac{a + bu}{c + du}$$
 (general case)  
 $t \mapsto \frac{bu}{c + du}$  ( $0 \mapsto 0 \Rightarrow a = 0$ )  
 $t \mapsto \frac{(c + d)u}{c + du}$  ( $1 \mapsto 1 \Rightarrow b = c + d$ )

In particular, those for which  $[0,1] \mapsto [0,1]$ 

$$t \mapsto \frac{a + bu}{c + du}$$
 (general case)  

$$t \mapsto \frac{bu}{c + du}$$
 (0 \rightarrow 0 \Rightarrow a = 0)  

$$t \mapsto \frac{(c + d)u}{c + du}$$
 (1 \rightarrow 1 \Rightarrow b = c + d)  

$$t \mapsto \frac{u}{\lambda + (1 - \lambda)u}$$
 (\lambda = \frac{c}{c+d})

$$\gamma^{n}(t) = \sum_{i=0}^{n} p_{i} b_{n,i}(t) = \sum_{i=0}^{n} p_{i} \binom{n}{i} (1-t)^{n-i} t^{i}$$

$$\gamma^{n}(t) = \sum_{i=0}^{n} p_{i} b_{n,i}(t) = \sum_{i=0}^{n} p_{i} {n \choose i} (1-t)^{n-i} t^{i}$$
$$t \mapsto \frac{u}{\lambda + (1-\lambda)u} \qquad 1-t \mapsto \frac{\lambda(1-u)}{\lambda + (1-\lambda)u}$$

$$\gamma^{n}(t) = \sum_{i=0}^{n} p_{i} b_{n,i}(t) = \sum_{i=0}^{n} p_{i} {n \choose i} (1-t)^{n-i} t^{i}$$

$$t \mapsto \frac{u}{\lambda + (1-\lambda)u} \qquad 1-t \mapsto \frac{\lambda(1-u)}{\lambda + (1-\lambda)u}$$

$$\gamma^{n} \left(\frac{u}{\lambda + (1-\lambda)u}\right) = \sum_{i=0}^{n} p_{i} {n \choose i} \frac{\lambda^{n-i} (1-u)^{n-i} u^{i}}{\left(\lambda + (1-\lambda)u\right)^{n}}$$

$$\gamma^{n}(t) = \sum_{i=0}^{n} p_{i} b_{n,i}(t) = \sum_{i=0}^{n} p_{i} {n \choose i} (1-t)^{n-i} t^{i}$$

$$t \mapsto \frac{u}{\lambda + (1-\lambda)u} \qquad 1-t \mapsto \frac{\lambda(1-u)}{\lambda + (1-\lambda)u}$$

$$\gamma^{n} \left(\frac{u}{\lambda + (1-\lambda)u}\right) = \sum_{i=0}^{n} p_{i} {n \choose i} \frac{\lambda^{n-i} (1-u)^{n-i} u^{i}}{\left(\lambda + (1-\lambda)u\right)^{n}}$$

$$= \sum_{i=0}^{n} (\lambda^{n-i} p_{i}) {n \choose i} (1-u)^{n-i} u^{i}$$

$$\gamma^{n}(t) = \sum_{i=0}^{n} p_{i} b_{n,i}(t) = \sum_{i=0}^{n} p_{i} {n \choose i} (1-t)^{n-i} t^{i}$$

$$t \mapsto \frac{u}{\lambda + (1-\lambda)u} \qquad 1-t \mapsto \frac{\lambda(1-u)}{\lambda + (1-\lambda)u}$$

$$\gamma^{n} \left(\frac{u}{\lambda + (1-\lambda)u}\right) = \sum_{i=0}^{n} p_{i} {n \choose i} \frac{\lambda^{n-i} (1-u)^{n-i} u^{i}}{(\lambda + (1-\lambda)u)^{n}}$$

$$= \sum_{i=0}^{n} (\lambda^{n-i} p_{i}) {n \choose i} (1-u)^{n-i} u^{i}$$

$$= \sum_{i=0}^{n} (\lambda^{n-i} p_{i}) b_{n,i}(t)$$

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p'_i = \begin{bmatrix} x'_i & y'_i & w'_i \end{bmatrix}$  such that  $w'_0 = w'_n = 1$ ?

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p_i' = \begin{bmatrix} x_i' & y_i' & w_i' \end{bmatrix}$  such that  $w_0' = w_n' = 1$ ?
Use a projective reparameterization that maps [0,1] to [0,1]

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p_i' = \begin{bmatrix} x_i' & y_i' & w_i' \end{bmatrix}$  such that  $w_0' = w_n' = 1$ ?

Use a projective reparameterization that maps [0,1] to [0,1]Result is  $p_i' = \lambda^{n-i}p_i$ 

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p_i' = \begin{bmatrix} x_i' & y_i' & w_i' \end{bmatrix}$  such that  $w_0' = w_n' = 1$ ?

Use a projective reparameterization that maps [0,1] to [0,1]Result is  $p_i' = \lambda^{n-i}p_i$ In particular,  $w_0' = \lambda^n w_0$  and  $w_n' = w_0$ 

Set  $w_0' = w_n'$  and solve for  $\lambda$ :  $\lambda^n w_0 = w_n \Rightarrow \sqrt[n]{\frac{w_n}{w_0}}$ 

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p_i' = \begin{bmatrix} x_i' & y_i' & w_i' \end{bmatrix}$  such that  $w_0' = w_n' = 1$ ?

Use a projective reparameterization that maps [0,1] to [0,1] Result is  $p_i' = \lambda^{n-i}p_i$ In particular,  $w_0' = \lambda^n w_0$  and  $w_n' = w_n$ 

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p_i' = \begin{bmatrix} x_i' & y_i' & w_i' \end{bmatrix}$  such that  $w_0' = w_n' = 1$ ?
Use a projective reparameterization that maps [0,1] to [0,1]Result is  $p_i' = \lambda^{n-i}p_i$ 

In particular,  $w_0' = \lambda^n w_0$  and  $w_n' = w_n$ Set  $w_0' = w_n'$  and solve for  $\lambda$ :  $\lambda^n w_0 = w_n \Rightarrow \sqrt[n]{\frac{w_n}{w_0}}$ 

Requires  $w_0 \neq 0$ ,  $w_n \neq 0$  and either  $w_n/w_0 \geq 0$  or n odd

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p'_i = \begin{bmatrix} x'_i & y'_i & w'_i \end{bmatrix}$  such that  $w'_0 = w'_n = 1$ ? Use a projective reparameterization that maps [0, 1] to [0, 1] Result is  $p'_i = \lambda^{n-i} p_i$ In particular,  $w'_0 = \lambda^n w_0$  and  $w'_n = w_n$ Set  $w_0' = w_n'$  and solve for  $\lambda$ :  $\lambda^n w_0 = w_n \Rightarrow \sqrt[n]{\frac{w_n}{w_0}}$ Requires  $w_0 \neq 0$ ,  $w_n \neq 0$  and either  $w_n/w_0 \geq 0$  or n odd

If so, apply reparameterization and then divide by  $w_n$ 

 $p_i' = p_i \sqrt[n]{w_n^{i-n} w_0^i}$ 

Given control points  $p_i = \begin{bmatrix} x_i & y_i & w_i \end{bmatrix}$ , can we trace the same curve but use control points  $p'_i = \begin{bmatrix} x'_i & y'_i & w'_i \end{bmatrix}$  such that  $w'_0 = w'_n = 1$ ? Use a projective reparameterization that maps [0, 1] to [0, 1] Result is  $p'_i = \lambda^{n-i} p_i$ In particular,  $w'_0 = \lambda^n w_0$  and  $w'_n = w_n$ Set  $w_0' = w_n'$  and solve for  $\lambda$ :  $\lambda^n w_0 = w_n \Rightarrow \sqrt[n]{\frac{w_n}{w_0}}$ Requires  $w_0 \neq 0$ ,  $w_n \neq 0$  and either  $w_n/w_0 \geq 0$  or n odd If so, apply reparameterization and then divide by  $w_n$ 

Parabola, ellipse, or hyperbola?

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Projective invariance of rational Bézier segments

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Projective invariance of rational Bézier segments

How to complement a rational Bézier segment?

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Projective invariance of rational Bézier segments

How to complement a rational Bézier segment?

Easy for circular arcs

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Projective invariance of rational Bézier segments

How to complement a rational Bézier segment?

- Easy for circular arcs
- By projective reparameterization

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Projective invariance of rational Bézier segments

How to complement a rational Bézier segment?

- Easy for circular arcs
- By projective reparameterization
- Parametrization issues

Parabola, ellipse, or hyperbola?

Points-with-weight interpretation

Projective invariance of rational Bézier segments

How to complement a rational Bézier segment?

- Easy for circular arcs
- By projective reparameterization
- Parametrization issues

How to find the affine transformation that maps the unit circle into a given rational quadratic Bézier segment?

### REFERENCES

G. Farin. Curves and Surfaces for CAGD, A Practical Guide, 5th edition. Morgan Kaufmann, 2002.