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WHAT THIS COURSE IS ABOUT

Computer processing of 2D visual content

Little to no focus on user interaction
- Not enough time...

Why 2D?
- Counter to intuition, it is more demanding than 3D
- Everyday use of computers is almost exclusively 2D
- There are plenty of 3D courses out there
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You are familiar with images
- Matrices where each entry is a color
- BMP, JPG, GIF, PNG, EXR, etc
Cameras can capture them
Artists can create or edit them with special software

- E.g, Gimp, Adobe Photoshop

They can be directly displayed or printed
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2D VISUAL CONTENT

We will focus on vector graphics
- Layers of colored shapes
- PDF, SVG, Al, EPS, CGM, etc

What you see in screens, other than photos and videos

Can be created by artists using special software
- E.g, Inkscape, Adobe Illustrator

Or by anyone that has ever used a word processor

Must be rendered into images before displayed or printed
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VECTOR GRAPHICS ARE EVERYWHERE

clip-paths to the shortcut tree like any other path geometry, and
maintain in each shortcut tree cell a stream that matches the scene
grammar described in section 3. Clipping operations are performed
per sample and with object precision.

‘When evaluating the color of each sample, the decision of whether
or not to blend the paint of a flled path is based on a Boolean
expression that involves the results of the inside-outside tests for the
path and all currently active clip-paths. Since this expression can be
arbitrarily nested, its evaluation seems to require one independent
stack per sample (or recursion). This is undesirable in code that
runs on GPUs. Fortunately, as discussed in section 4.3, certain
conditions (see the pruning rules) allow us to skip the evaluation of
large parts of the scene. These conditions are closely related to the
short-circuit evaluation of Boolean expressions. Once we include
these optimizations, it becomes apparent that the value at the top
of the stack is never referenced. The successive simplif cations that
come from this key observation lead to the fat clipping algorithm,
which does not require a stack (or recursion).

Flat clipping The intuition is that, during a union operation, the
frst inside-outside test that succeeds allows the algorithm to skip all
remaining tests at that nesting level. The same happens during an
intersection when the f rst failed inside-outside test is found. Values
on the stack can therefore be replaced by knowledge of whether or
not we are currently skipping the tests, and where to stop skipping.
The required context can be maintained with a f nite-state machine.

The machine has three states: processing (P), skipping (S), and skip-
ping by activate (SA). Inside-outside tests and color computations
are only performed when the machine is in state P. The S and SA
states are used to skip over entire swaths of elements in the stream.
In addition to the machine state, the algorithm maintains the sample
color currently under computation and three state variables that
control the short-circuit evaluation. The f rst two state variables keep

Initial state
d<0,u<0

). d<s,u>0 c1 fi,a=1
gé=g=1l sd s+ 0

l,d<s
Figure 12: State transition diagram for the fnite-state machine of
the fat-clipping algorithm.

two transitions away from S. The frst transition happens when
an activate operation is found. Looking at the scene grammar, we
see that this can only happen if the machine arrived at S due to
a ¢y transition from P. In other words, an entire clip-path test has
succeeded, and therefore we transition unconditionally back to P.
The second transition happens when a matching ) is found. The
condition u = ( means the machine is not inside a nested clip-path
test, so it simply transitions back to P. If the machine is skipping
inside a nested clip-path test, one of the inner clip tests must have
passed, and therefore the outer test can be short-circuited as well.
The machine simply resets the stop depth to the outer level and
continues in state S.

The remaining transitions are between P and SA. If the machine
fndsa| while in state P, it must have been performing a clip-path
test that failed. Otherwise, it would have been in state S. Since the
test failed, it can skip until the matching ) . This is what motivates
the name skipping by activate.

5.3 Scheduling
The pipeline allows a user to specify a 3 x 3 projective transforma7

tion to be applied to the sample coordinates. Experienced users can
PR o . L . . 1 o . .
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GRADING

Assignments

60%

10%
Participation

Exams



ASSIGNMENTS

1. Triangles, circles, and polygons

n



ASSIGNMENTS

1. Triangles, circles, and polygons

n



ASSIGNMENTS

ORI

5'-"-
1. Triangles, circles, and polygons

-a..-.-.. .._..-'

X} 10: _.
St@itier 4 RS
i85 e X0 .;r; i

*0:% ‘.
?‘.-‘".. ‘.'-.o:-.!gd’.'il s

)

n



ASSIGNMENTS

1. Triangles, circles, and polygons




ASSIGNMENTS

o o Tsble ¢ Prvgarrion of the presserrmed lgemithon, far sores amd coleom

1. Trian g[es circles, and po [ygo ns Scessing afem i w age 1A vl nd i) recsive
. ’ ’ JHiers of sidee v, Gasiming bleck she b gud b YMs WG cores cach,
Foar cauk algeitm, we shon an esiimeie gf e suder nf sleps

. sequired, e suaiomn saonier of woraled indepesden ety aul
2 Ad d p ath ren d erin g Jher avguired memsary Do duiieh
Ny Repeonpraiz | Menwolfeds | Racwldlh
Rl Snr o sna

16} thas

n



ASSIGNMENTS

1. Triangles, circles, and polygons
2. Add path rendering

n



ASSIGNMENTS

1. Triangles, circles, and polygons
2. Add path rendering

n



ASSIGNMENTS

1. Triangles, circles, and polygons

—
2. Add path rendering C%
3. Add transparency and gradients /)

1



ASSIGNMENTS

1. Triangles, circles, and polygons
2. Add path rendering
3. Add transparency and gradients

n



ASSIGNMENTS

1. Triangles, circles, and polygons
2. Add path rendering

3. Add transparency and gradients
4. Add implicit intersection tests

n



ASSIGNMENTS

1. Triangles, circles, and polygons @
2. Add path rendering - @)
3. Add transparency and gradients O :

4. Add implicit intersection tests
41 Add anti-aliasing

n



ASSIGNMENTS

1. Triangles, circles, and polygons
2. Add path rendering
3. Add transparency and gradients

4. Add implicit intersection tests

41 Add anti-aliasing
4.2 Add texture mapping

—— Cublc Schaum —— Cardinal Quadratic O-MOMS
—— Cardinal Quadratic O-MOMS —— Gubic Schaum

B [input
(a) PSNR=0o,  (b) PSNR=32.21, (c) PSNR=29.86,
SSIM =1.0 SSIM=0.94 SSIM=0.90

Fig. 2. Comparison between the quadratic O-MOMS, a 3"-order interpolator
proposed by Blu et al. [4], and a 4™-order cubic by Schaum [32]. Even with
its lower order, O-MOMS’s error kernel shows a better behavior overall in
most of the Nyquist interval (top left). Detail (top right) shows that Schaum’s
is only better for a tiny portion of the spectrum near the origin. Comparison
of 30 consecutive rotations conf rm the better approximation qualities of the
0-MOMS interpolator.
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ASSIGNMENTS

1. Triangles, circles, and polygons

Add path rendering

Add transparency and gradients
Add implicit intersection tests

41 Add anti-aliasing
4.2 Add texture mapping

= O N

5. Add acceleration
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Properties preserved by a group of transformations

- Euclydean
- Affine
- Projective

Representations for points, vectors, and transformations

Focus on using transformations to solve geometric problems
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CLASS 3: VECTOR GRAPHICS

Seminal work by Warnock and Wyatt [1982]
- PostScript, PDF, SVG
- RVG: our own representation

Layers, shapes, and paints
Basic rasterization loop
Inside-outside test for triangles, polygons, and circles

Assignment 1 posted: triangles, circles, and polygons
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CLASS 4-5: PARAMETRIC CURVES

From polygons to paths
Splines, Lagrangian interpolation, B-splines

Bézier curves
- Bernstein basis
- Derivative, degree elevation
- Affine reparameterization, subdivision
- Intersection, monotonization
- Flattening

Rational Bézier curves
- Required for circular arcs

14
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CLASS 6: FLOATING-POINT AND ROOT-FINDING

Representation of paths
- Converting other primitives to paths

Floating-point representation and properties
- Numerical issues

Iterative root-finding methods
- Bisection
- Newton-Raphson
- Safe Newton-Raphson

Two simple methods for finding roots of polynomials
- Power basis
- Bernstein basis

Assignment 2 posted: path rendering
15
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CLASS 7: COLOR AND COMPOSITING

Radiometry
- Physics of light

Photometry
- Perception of light

Representation of colors by computer
- SRGB, XYZ
- Gamma correction

Transparency
- Seminal work by Porter and Duff [1984]
- Pre-multiplied alpha
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CLASS 8: GRADIENT PAINTS

Procedural way of defining spatially varying colors

2D map + color ramp
- Linear gradient
- Radial gradient

Mesh gradients
- Gouraud shaded triangle mesh

- Coons patch mesh
- Tensor-product patch mesh

Assignment 3 posted: transparency and gradients
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CLASS 9: RESULTANTS AND IMPLICIT CURVES

Moving towards an implicit test for intersections
- Avoid costly root-finding

Implicit form of parametric polynomial curves

Resultant
- Sylvester form
- Cayley-Bezout form

Affine implicitization
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CLASS 10—11: DIFFERENTIAL GEOMETRY

Planar parametric curves
Rectification, and arc length
Arc-length parameterization
Curvature, offset, and evolute
Inflections

Double-points

Stroking

19
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CLASS 12: ABSTRACT SEGMENTS

The design of a segment primitive for rendering

Implicit test instead of root-finding
- Idea fails in general
- But works in a limited region of space

Outside that region, we use simpler tests
- Bounding-box test
- Auxiliary line tests

Assignment 4 posted: implicit intersection tests
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Proper definition of digital image
Rendering as an approximation problem

Ideal sampling theory
- Introduction to Fourier transforms
- Whittaker-Nyquist-Kotelnikov-Shannon theorem

- Aliasing

Shift-invariant approximation spaces
- Ideal sampling reduces to sinc as generator
- Discussion of the box case
- Both are orthogonal spaces

21



CLASS 14: ANTI-ALIASING AND TEXTURE MAPPING

The anti-aliasing integral
- Analytic solutions are not possible

22



CLASS 14: ANTI-ALIASING AND TEXTURE MAPPING

The anti-aliasing integral
- Analytic solutions are not possible

Conflation of coverage with opacity
- Problem with correlated mattes
- Problem with gamma correction

22



CLASS 14: ANTI-ALIASING AND TEXTURE MAPPING

The anti-aliasing integral
- Analytic solutions are not possible

Conflation of coverage with opacity
- Problem with correlated mattes
- Problem with gamma correction

Supersampling
- Monte Carlo integration
- Effect of sample distributions on variance

22



CLASS 14: ANTI-ALIASING AND TEXTURE MAPPING

The anti-aliasing integral
- Analytic solutions are not possible

Conflation of coverage with opacity
- Problem with correlated mattes
- Problem with gamma correction

Supersampling
- Monte Carlo integration
- Effect of sample distributions on variance

Texturing filtering
- Mipmaps
- Anisotropic filtering

22
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Classical acceleration data structures

- Space partition
- Quadtree, K-d tree, and BSP

- Bounding volume hierarchy
- R-tree

Specific for vector graphics
- Adaptation of quadtree and R-tree
- Shortcut tree
- Shortcut regular grid

Assignment 5 posted: acceleration
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CLASS 17: TYPESETTING

History of typesetting
- Calligraphy
- Gutenberg's printing press

Unicode

Fonts
- Metafont, TTF, Type 1, OpenType

- Metrics, shaping, kerning, ligatures
- Hinting, ClearType
Paragraph
- Hyphenation and justification
- Seminal work by Knuth and Plass [1981]

- Micro-typography
2%
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CLASS 18: STROKED PRIMITIVES

Definition
- Dashing and decorations

Two different approaches to rendering
- Using distance to generator
- Converting to filled primitives

Two conversion methods
- Flattening the generator
- Outputting curved outlines

Required approximations
- To arc length
- To offset and evolute
25
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CLASS 19: SCREEN-SPACE EFFECTS

Blur
- Direct convolution
- In frequency domain
- Recursive filter
- Monte Carlo

Clipping
- Per pixel or per sample
- Vatti's algorithm [1992]

26



CLASS 20: OTHER RENDERING ALGORITHMS

Active edge list algorithm [1967]
NVPR [2012]
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DispLAYS FROM 1980-1990

CGA (Color Graphics Array) (1981)
- 16KB of video memory
- Text: 80 x 25 with 8 x 8 characters
- Graphics: 320 x 200 4 bpp, 640 x 200 1bpp

VGA (Video Graphics Array) (1987)
- 256KB of video memory
- Text mode 80 x 25 with 9 x 16 characters
- Graphics: 320 x 240 8bpp, 640 x 480 4bpp

SVGA (Super Video Graphics Array) (1989)
- Graphics: 800 x 600 4bpp, 640 x 480 8bpp

29



SCREEN RESOLUTION

< Worams

WSVGA
1024 x 600
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CGA TEXT USER INTERFACE

DEFTHD  JOE YEARS SALARY  BOMUS
1777 Azibad 4000 Sales 400064 10008
81964 Brown GA00 Sales 45080 10808
48378 Burns 6880 Agr 75068 25808
58766 Caeser 7080 Mgr B506E 25808
40602 Curly 3080 Rgr 65080 2aEnA
34701 Dabarrett 7800 Sales 45008 18008
B4084 Daniels 1000 President 150068 1oB@0A
59937 Dempsey 3000 Sales 4@omA 10808
51515 Donovan JE00 Sales J006a 5008
48333 Fields 4800 Ngr 70068 25608
91574 Fiklore 1880 Admin 3506a -—
64596 Fine 5880 Mgr 75060 25808
13729 Green 1088 Pgr n@nea 25808
55957 Hermann 4800 Sales SE0EE 18808
31619 Hodgedon 5800 Sales 4006A 10608
1773 Howard 2080 Pgr gooma 25808
2165 Hugh 1600 Admin 30068 ===
23987 Johnson 1088 vpP JLELTET 508068
7166 Laflare 2000 Sales 35008 5808
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CODE PAGE 437

0 1| 2 3 4 _5 _6 7 _8 9 A | _B _c D | _E _F
(o} i é a a a a [} é é e b i i A A
| 00C7 00FC 00E9 00E2 00E4 00EO0 00ES5 00E7 00EA 00EB 00E8 00EF 00EE 00EC 00c4 00C5
128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143
E ES E [°) o) o) a u ¥ o] U ¢ £ ¥ s f
| 00C9 00E6 00C6 00F4 00F6 00F2 00FB 00F9 00FF 00D6 00DC 00A2 00A3 00AS5 20A7 0192
144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159
a i [¢) a n N a o é — il 1 % i « »
._| 00E1 00ED 00F3 00FA 00F1 00D1 00AA 00BA 00BF 2310 00AC 00BD 00BC 00A1 00AB 00BB
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175
] 4 1

AL ARRERERERERERERERERE N
. 2592 2593 2502 2524 2561 2562 2556 2555 2563 2551 2557 255D 255C 255B 2510
176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191

L n — L 1L - L — 1L L

T F + F " L Ir = T r = i =
—| 2514 2534 252C 251C 2500 253C 255E 255F 255A 2554 2569 2566 2560 2550 256C 2567
192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207

o = 1L a4 u

T|oT L F r| t |+ roon | e | |

_| 2568 2564 2565 2559 2558 2552 2553 256B 256A 2518 250C 2588 2584 258C 2590 2580
208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223

o B r m b o u T ) [C) Q d o ) € n
| 03B1 00DF 0393 03co 03A3 03C3 00B5 03c4 03A6 0398 03A9 03B4 221E 03Cé6 03B5 2229
224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239
= + z ] I J + = ° . . v n 2 NBSP
—| 2261 00B1 2265 2264 2320 2321 00F7 2248 00BO 2219 00B7 221A 207F 00B2 25A0 00A0
240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255
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VGA TEXTUAL USER INTERFACE

autoexec bat
command
config

Io

M=dos

winazo

C:1 Name

123view
4372ansi
8502ansi
8632ansi
8652ansi
B8662ansi
ansiz43?
ansiZzgho
ansiZ863
ansiZ865
ansiZ866
arcview
bitmap
bug
bungee
clp2dib
CMpsry

Name Name
datex P nc
dbview exe [nc
dirZdir exe|nc_exit
drawZumf exe|nc_exit
drwZwmf exe|ncclean
evileye nss|ncclean
faces nss |ncdd
fish nss |ncdd
flip nss |ncedit
genie scx|ncedit
ico2dib exe|ncff
mouse nss |ncff
mspZdib exe|ncff
nc cfg|nclabel
nc exe [ncmain
nc fil|ncnet
nc hlp|ncnet
nc ico |ncpscrip

winaZo. 386

9349 5-31-94 6:Z2Za

PUP--DIR4 ?7-21-17 3:

NNC>
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ROGUE (1980)

Hits:29(29) Str:16(16) Gold: 718 Armor :5




3D MONSTER MAZE (1981)

SCORE
15
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3D MONSTER MAZE (1981)

SCORE
15

40



CGA GRAPHICAL USER INTERFACE
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SVGA GRAPHICAL USER INTERFACE
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ASTEROIDS (1979)
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BATTLEZONE (1980)
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GRAPHICS PRIMITIVES

The screen can be seen as a W x H matrix of pixels
- Pixel at coordinates (x,y) has color ¢
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GRAPHICS PRIMITIVES

The screen can be seen as a W x H matrix of pixels
- Pixel at coordinates (x,y) has color ¢

Assume we have two graphics primitives

set_pixel(img, x, y, c)
hline(img, x1, x2, vy, c)
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GRAPHICS PRIMITIVES

The screen can be seen as a W x H matrix of pixels
- Pixel at coordinates (x,y) has color ¢

Assume we have two graphics primitives

set_pixel(img, x, y, c)
hline(img, x1, x2, vy, c)

How do we
- draw an arbitrary line?
- fill an arbitrary polygon?
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LINE DRAWING

Bresenham, J. E. 1965. “Algorithm for computer control of a digital
plotter”. IBM Systems Journal.
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Integer endpoints
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Bresenham, J. E. 1965. “Algorithm for computer control of a digital
plotter”. IBM Systems Journal.

Integer endpoints

Incremental
- No divisions
- (almost) No multiplications
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LINE DRAWING

Bresenham, J. E. 1965. “Algorithm for computer control of a digital
plotter”. IBM Systems Journal.

Integer endpoints

Incremental
- No divisions
- (almost) No multiplications

Leave no gaps
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LINE DRAWING

(X1, 1)
| y

(X0, Y0)
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‘ (X1, y1)

(X0, Y0)
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‘ (X1, y1)

(x,¥)
|

(X0, Y0)

X — Xo X1 — Xo

Y—Yo Y1—Yo
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LINE DRAWING

‘ (X1, 1)

(x,¥)
|

(X0, Y0)

X —Xo X1 — Xo

V—Yo  Y1—Yo
(V1 = Yo)(Xx —Xo) — (X1 —Xo)(y —¥0) =0
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LINE DRAWING

‘ (X1, y1)

(x,¥)
|

(X0, Y0)

X — Xo X1 — Xo

V—Yo  Y1—Yo
(Y1 = Yo)(X — Xo) — (x1 — X0)(Y — Yo)
[4x,y) = 2dy (x = x0) = 2dX (y — yo)

0
0

|
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LINE DRAWING

/

v

4(x,y) = 2dy (x = Xo) — 2dx (y — yo) = 0|
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LINE DRAWING

v

4(x,y) = 2dy (x = Xo) — 2dx (y — yo) = 0|

(X0, Y0) = £(x1,y1) =0

U(Xo + 3, Y0+ 3) = dy — dx
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LINE DRAWING

v

4(x,y) = 2dy (x = Xo) — 2dx (y — yo) = 0|

£(x0,Y0) = £(x1,¥1) =0
(x+1,y) = Ux,y) = 2dy

U(Xo + 3, Y0+ 3) = dy — dx
E(va + 1) - g(Xay) = —2dx

49



LINE DRAWING

v

e

4(x,y) = 2dy (x = Xo) — 2dx (y — yo) = 0|

£(x0,Y0) = £(x1,¥1) =0
(x+1,y) = Ux,y) = 2dy

U(Xo + 3, Y0+ 3) = dy — dx
E(va + 1) - g(Xay) = —2dx

49



LINE DRAWING

v

ke

4(x,y) = 2dy (x = Xo) — 2dx (y — yo) = 0|
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(x+1,y) = Ux,y) = 2dy

U(Xo + 3, Y0+ 3) = dy — dx
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LINE DRAWING

o

U(x0,Yo) = £(x1,y1) = 0 U(xo + 3,Y0 + 3) = dy — dx
Ux+1,y) —x,y)=2dy  Lx,y+1)—€x,y)=—2dx
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U(x0,Yo) = £(x1,y1) = 0 U(xo + 3,Y0 + 3) = dy — dx
Ux+1,y) —x,y)=2dy  Lx,y+1)—€x,y)=—2dx
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LINE DRAWING

local function linex(img, x1, y1, x2, y2, set_pixel)
local dx, dy = x2 — x1, y2 — y1
local sx, sy = sign(dx), sign(dy)
dx, dy = sx = dx, sy = dy
assert(dx >= dy)
local f = dy — dx
dx, dy = dx=*2, dyx2
local x, y = x1, y1
set_pixel(img, x, y)
while x ~= x2 do
X = X + SX
f
if f >0 then
f = f — dx
y =y + sy
end
set_pixel(img, x, vy)
end
end

1
—h
S
o

<
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LINE DRAWING

local function set_pixelyx(img, y, x)
set_pixel(img, x, V)
end

function line(img, x1, y1, x2, y2)
local dx, dy = math.abs(x2—x1), math.abs(y2—y1)
if dx > dy then
linex(img, x1, y1, x2, y2, set_pixel)
else
linex(img, y1, x1, y2, x2, set_pixelyx)
end
end
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POLYGON FILLING

(?) Wylie, C. et al. 1967. “A hidden surface algorithm for computer
generated halftone pictures”. Proceedings Fall Joint Computer
Conference.

Integer endpoints

Incremental
- No divisions
- (almost) No multiplications

Leave no gaps
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POLYGON FILLING

(?) Wylie, C. et al. 1967. “A hidden surface algorithm for computer
generated halftone pictures”. Proceedings Fall Joint Computer
Conference.

Integer endpoints

Incremental
- No divisions
- (almost) No multiplications

Leave no gaps

Use spatial coherence
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POLYGON FILLING
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