
2D Computer Graphics

Diego Nehab

Summer 2020

IMPA

1

Introduction

What this course is about

Computer processing of 2D visual content

Little to no focus on user interaction

• Not enough time…

Why 2D?

• Counter to intuition, it is more demanding than 3D

• Everyday use of computers is almost exclusively 2D

• There are plenty of 3D courses out there

2

What this course is about

Computer processing of 2D visual content

Little to no focus on user interaction

• Not enough time…

Why 2D?

• Counter to intuition, it is more demanding than 3D

• Everyday use of computers is almost exclusively 2D

• There are plenty of 3D courses out there

2

What this course is about

Computer processing of 2D visual content

Little to no focus on user interaction

• Not enough time…

Why 2D?

• Counter to intuition, it is more demanding than 3D

• Everyday use of computers is almost exclusively 2D

• There are plenty of 3D courses out there

2

What this course is about

Computer processing of 2D visual content

Little to no focus on user interaction

• Not enough time…

Why 2D?

• Counter to intuition, it is more demanding than 3D

• Everyday use of computers is almost exclusively 2D

• There are plenty of 3D courses out there

2

What this course is about

Computer processing of 2D visual content

Little to no focus on user interaction

• Not enough time…

Why 2D?

• Counter to intuition, it is more demanding than 3D

• Everyday use of computers is almost exclusively 2D

• There are plenty of 3D courses out there

2

Course information

Teaching assistant

• Pedro Souza

• Lab time?

Course webpage

• http://www.impa.br/~diego/teaching/vg

Discussion list

• https://groups.google.com/d/forum/impa-2020-0-2dcg

3

http://www.impa.br/~diego/teaching/vg
https://groups.google.com/d/forum/impa-2020-0-2dcg

Course information

Teaching assistant

• Pedro Souza

• Lab time?

Course webpage

• http://www.impa.br/~diego/teaching/vg

Discussion list

• https://groups.google.com/d/forum/impa-2020-0-2dcg

3

http://www.impa.br/~diego/teaching/vg
https://groups.google.com/d/forum/impa-2020-0-2dcg

Course information

Teaching assistant

• Pedro Souza

• Lab time?

Course webpage

• http://www.impa.br/~diego/teaching/vg

Discussion list

• https://groups.google.com/d/forum/impa-2020-0-2dcg

3

http://www.impa.br/~diego/teaching/vg
https://groups.google.com/d/forum/impa-2020-0-2dcg

2D visual content

You are familiar with images

• Matrices where each entry is a color

• BMP, JPG, GIF, PNG, EXR, etc

Cameras can capture them

Artists can create or edit them with special software

• E.g., Gimp, Adobe Photoshop

They can be directly displayed or printed

4

2D visual content

You are familiar with images

• Matrices where each entry is a color

• BMP, JPG, GIF, PNG, EXR, etc

Cameras can capture them

Artists can create or edit them with special software

• E.g., Gimp, Adobe Photoshop

They can be directly displayed or printed

4

2D visual content

You are familiar with images

• Matrices where each entry is a color

• BMP, JPG, GIF, PNG, EXR, etc

Cameras can capture them

Artists can create or edit them with special software

• E.g., Gimp, Adobe Photoshop

They can be directly displayed or printed

4

2D visual content

You are familiar with images

• Matrices where each entry is a color

• BMP, JPG, GIF, PNG, EXR, etc

Cameras can capture them

Artists can create or edit them with special software

• E.g., Gimp, Adobe Photoshop

They can be directly displayed or printed

4

2D visual content

We will focus on vector graphics

• Layers of colored shapes

• PDF, SVG, AI, EPS, CGM, etc

What you see in screens, other than photos and videos

Can be created by artists using special software

• E.g., Inkscape, Adobe Illustrator

Or by anyone that has ever used a word processor

Must be rendered into images before displayed or printed

5

2D visual content

We will focus on vector graphics

• Layers of colored shapes

• PDF, SVG, AI, EPS, CGM, etc

What you see in screens, other than photos and videos

Can be created by artists using special software

• E.g., Inkscape, Adobe Illustrator

Or by anyone that has ever used a word processor

Must be rendered into images before displayed or printed

5

2D visual content

We will focus on vector graphics

• Layers of colored shapes

• PDF, SVG, AI, EPS, CGM, etc

What you see in screens, other than photos and videos

Can be created by artists using special software

• E.g., Inkscape, Adobe Illustrator

Or by anyone that has ever used a word processor

Must be rendered into images before displayed or printed

5

2D visual content

We will focus on vector graphics

• Layers of colored shapes

• PDF, SVG, AI, EPS, CGM, etc

What you see in screens, other than photos and videos

Can be created by artists using special software

• E.g., Inkscape, Adobe Illustrator

Or by anyone that has ever used a word processor

Must be rendered into images before displayed or printed

5

2D visual content

We will focus on vector graphics

• Layers of colored shapes

• PDF, SVG, AI, EPS, CGM, etc

What you see in screens, other than photos and videos

Can be created by artists using special software

• E.g., Inkscape, Adobe Illustrator

Or by anyone that has ever used a word processor

Must be rendered into images before displayed or printed

5

Resolution and scalability

Images have a fixed, finite resolution

6

Resolution and scalability

Images have a fixed, finite resolution

6

Resolution and scalability

Images have a fixed, finite resolution

6

Resolution and scalability

Images have a fixed, finite resolution

6

Resolution and scalability

Images have a fixed, finite resolution

Vector graphics are scalable

6

Resolution and scalability

Images have a fixed, finite resolution

Vector graphics are scalable

6

Resolution and scalability

Images have a fixed, finite resolution

Vector graphics are scalable

6

Resolution and scalability

Images have a fixed, finite resolution

Vector graphics are scalable

6

Vector graphics are everywhere

clip-paths to the shortcut tree like any other path geometry, and
maintain in each shortcut tree cell a stream that matches the scene
grammar described in section 3. Clipping operations are performed
per sample and with object precision.

When evaluating the color of each sample, the decision of whether
or not to blend the paint of a f lled path is based on a Boolean
expression that involves the results of the inside-outside tests for the
path and all currently active clip-paths. Since this expression can be
arbitrarily nested, its evaluation seems to require one independent
stack per sample (or recursion). This is undesirable in code that
runs on GPUs. Fortunately, as discussed in section 4.3, certain
conditions (see the pruning rules) allow us to skip the evaluation of
large parts of the scene. These conditions are closely related to the
short-circuit evaluation of Boolean expressions. Once we include
these optimizations, it becomes apparent that the value at the top
of the stack is never referenced. The successive simplif cations that
come from this key observation lead to the f at clipping algorithm,
which does not require a stack (or recursion).

Flat clipping The intuition is that, during a union operation, the
f rst inside-outside test that succeeds allows the algorithm to skip all
remaining tests at that nesting level. The same happens during an
intersection when the f rst failed inside-outside test is found. Values
on the stack can therefore be replaced by knowledge of whether or
not we are currently skipping the tests, and where to stop skipping.
The required context can be maintained with a f nite-state machine.

The machine has three states: processing (P), skipping (S), and skip-
ping by activate (SA). Inside-outside tests and color computations
are only performed when the machine is in state P . The S and SA
states are used to skip over entire swaths of elements in the stream.

In addition to the machine state, the algorithm maintains the sample
color currently under computation and three state variables that
control the short-circuit evaluation. The f rst two state variables keep
track of the current clipping nesting depth d and the number u of

Figure 12: State transition diagram for the f nite-state machine of
the f at-clipping algorithm.

two transitions away from S. The f rst transition happens when
an activate operation is found. Looking at the scene grammar, we
see that this can only happen if the machine arrived at S due to
a c1 transition from P . In other words, an entire clip-path test has
succeeded, and therefore we transition unconditionally back to P .
The second transition happens when a matching) is found. The
condition u = 0 means the machine is not inside a nested clip-path
test, so it simply transitions back to P . If the machine is skipping
inside a nested clip-path test, one of the inner clip tests must have
passed, and therefore the outer test can be short-circuited as well.
The machine simply resets the stop depth to the outer level and
continues in state S.

The remaining transitions are between P and SA. If the machine
f nds a | while in state P , it must have been performing a clip-path
test that failed. Otherwise, it would have been in state S. Since the
test failed, it can skip until the matching) . This is what motivates
the name skipping by activate.

5.3 Scheduling

The pipeline allows a user to specify a 3× 3 projective transforma-
tion to be applied to the sample coordinates. Experienced users can
design arbitrary warping functions in CUDA.1 Since the pipeline

7

Vector graphics are everywhere

8

Vector graphics are everywhere

9

Evaluation

Grading

Assignments

60%

Exams

30%
Participation

10%

10

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
ω

E
(ω

)

Cardinal Quadratic O-MOMS
Cubic Schaum

0

0.1

0.2

0.3

0.4

0.5

0 0.01 0.02 0.03
ω

E
(ω

)
x
 1

0
9

Cardinal Quadratic O-MOMS
Cubic Schaum

Input Card. Quadr. O-MOMS Cubic Schaum

(a) PSNR=∞ ,
SSIM =1.0

(b) PSNR=32.21,
SSIM=0.94

(c) PSNR=29.86,
SSIM=0.90

Fig. 2. Comparison between the quadratic O-MOMS, a 3rd-order interpolator
proposed by Blu et al. [4], and a 4th-order cubic by Schaum [32]. Even with
its lower order, O-MOMS’s error kernel shows a better behavior overall in
most of the Nyquist interval (top left). Detail (top right) shows that Schaum’s
is only better for a tiny portion of the spectrum near the origin. Comparison
of 30 consecutive rotations conf rm the better approximation qualities of the
O-MOMS interpolator.

11

Assignments

1. Triangles, circles, and polygons

2. Add path rendering

3. Add transparency and gradients

4. Add implicit intersection tests

4.1 Add anti-aliasing

4.2 Add texture mapping

5. Add acceleration

11

Overview of lectures

Class 2: Geometry and transformations

Properties preserved by a group of transformations

• Euclydean

• Affine

• Projective

Representations for points, vectors, and transformations

Focus on using transformations to solve geometric problems

12

Class 2: Geometry and transformations

Properties preserved by a group of transformations

• Euclydean

• Affine

• Projective

Representations for points, vectors, and transformations

Focus on using transformations to solve geometric problems

12

Class 2: Geometry and transformations

Properties preserved by a group of transformations

• Euclydean

• Affine

• Projective

Representations for points, vectors, and transformations

Focus on using transformations to solve geometric problems

12

Class 3: Vector graphics

Seminal work by Warnock and Wyatt [1982]

• PostScript, PDF, SVG

• RVG: our own representation

Layers, shapes, and paints

Basic rasterization loop

Inside-outside test for triangles, polygons, and circles

Assignment 1 posted: triangles, circles, and polygons

13

Class 3: Vector graphics

Seminal work by Warnock and Wyatt [1982]

• PostScript, PDF, SVG

• RVG: our own representation

Layers, shapes, and paints

Basic rasterization loop

Inside-outside test for triangles, polygons, and circles

Assignment 1 posted: triangles, circles, and polygons

13

Class 3: Vector graphics

Seminal work by Warnock and Wyatt [1982]

• PostScript, PDF, SVG

• RVG: our own representation

Layers, shapes, and paints

Basic rasterization loop

Inside-outside test for triangles, polygons, and circles

Assignment 1 posted: triangles, circles, and polygons

13

Class 3: Vector graphics

Seminal work by Warnock and Wyatt [1982]

• PostScript, PDF, SVG

• RVG: our own representation

Layers, shapes, and paints

Basic rasterization loop

Inside-outside test for triangles, polygons, and circles

Assignment 1 posted: triangles, circles, and polygons

13

Class 3: Vector graphics

Seminal work by Warnock and Wyatt [1982]

• PostScript, PDF, SVG

• RVG: our own representation

Layers, shapes, and paints

Basic rasterization loop

Inside-outside test for triangles, polygons, and circles

Assignment 1 posted: triangles, circles, and polygons

13

Class 4–5: Parametric curves

From polygons to paths

Splines, Lagrangian interpolation, B-splines

Bézier curves

• Bernstein basis

• Derivative, degree elevation

• Affine reparameterization, subdivision

• Intersection, monotonization

• Flattening

Rational Bézier curves

• Required for circular arcs

14

Class 4–5: Parametric curves

From polygons to paths

Splines, Lagrangian interpolation, B-splines

Bézier curves

• Bernstein basis

• Derivative, degree elevation

• Affine reparameterization, subdivision

• Intersection, monotonization

• Flattening

Rational Bézier curves

• Required for circular arcs

14

Class 4–5: Parametric curves

From polygons to paths

Splines, Lagrangian interpolation, B-splines

Bézier curves

• Bernstein basis

• Derivative, degree elevation

• Affine reparameterization, subdivision

• Intersection, monotonization

• Flattening

Rational Bézier curves

• Required for circular arcs

14

Class 4–5: Parametric curves

From polygons to paths

Splines, Lagrangian interpolation, B-splines

Bézier curves

• Bernstein basis

• Derivative, degree elevation

• Affine reparameterization, subdivision

• Intersection, monotonization

• Flattening

Rational Bézier curves

• Required for circular arcs

14

Class 6: Floating-point and root-finding

Representation of paths

• Converting other primitives to paths

Floating-point representation and properties

• Numerical issues

Iterative root-finding methods

• Bisection

• Newton-Raphson

• Safe Newton-Raphson

Two simple methods for finding roots of polynomials

• Power basis

• Bernstein basis

Assignment 2 posted: path rendering

15

Class 6: Floating-point and root-finding

Representation of paths

• Converting other primitives to paths

Floating-point representation and properties

• Numerical issues

Iterative root-finding methods

• Bisection

• Newton-Raphson

• Safe Newton-Raphson

Two simple methods for finding roots of polynomials

• Power basis

• Bernstein basis

Assignment 2 posted: path rendering

15

Class 6: Floating-point and root-finding

Representation of paths

• Converting other primitives to paths

Floating-point representation and properties

• Numerical issues

Iterative root-finding methods

• Bisection

• Newton-Raphson

• Safe Newton-Raphson

Two simple methods for finding roots of polynomials

• Power basis

• Bernstein basis

Assignment 2 posted: path rendering

15

Class 6: Floating-point and root-finding

Representation of paths

• Converting other primitives to paths

Floating-point representation and properties

• Numerical issues

Iterative root-finding methods

• Bisection

• Newton-Raphson

• Safe Newton-Raphson

Two simple methods for finding roots of polynomials

• Power basis

• Bernstein basis

Assignment 2 posted: path rendering

15

Class 6: Floating-point and root-finding

Representation of paths

• Converting other primitives to paths

Floating-point representation and properties

• Numerical issues

Iterative root-finding methods

• Bisection

• Newton-Raphson

• Safe Newton-Raphson

Two simple methods for finding roots of polynomials

• Power basis

• Bernstein basis

Assignment 2 posted: path rendering
15

Class 7: Color and compositing

Radiometry

• Physics of light

Photometry

• Perception of light

Representation of colors by computer

• sRGB, XYZ

• Gamma correction

Transparency

• Seminal work by Porter and Duff [1984]

• Pre-multiplied alpha

16

Class 7: Color and compositing

Radiometry

• Physics of light

Photometry

• Perception of light

Representation of colors by computer

• sRGB, XYZ

• Gamma correction

Transparency

• Seminal work by Porter and Duff [1984]

• Pre-multiplied alpha

16

Class 7: Color and compositing

Radiometry

• Physics of light

Photometry

• Perception of light

Representation of colors by computer

• sRGB, XYZ

• Gamma correction

Transparency

• Seminal work by Porter and Duff [1984]

• Pre-multiplied alpha

16

Class 7: Color and compositing

Radiometry

• Physics of light

Photometry

• Perception of light

Representation of colors by computer

• sRGB, XYZ

• Gamma correction

Transparency

• Seminal work by Porter and Duff [1984]

• Pre-multiplied alpha

16

Class 8: Gradient paints

Procedural way of defining spatially varying colors

2D map + color ramp

• Linear gradient

• Radial gradient

Mesh gradients

• Gouraud shaded triangle mesh

• Coons patch mesh

• Tensor-product patch mesh

Assignment 3 posted: transparency and gradients

17

Class 8: Gradient paints

Procedural way of defining spatially varying colors

2D map + color ramp

• Linear gradient

• Radial gradient

Mesh gradients

• Gouraud shaded triangle mesh

• Coons patch mesh

• Tensor-product patch mesh

Assignment 3 posted: transparency and gradients

17

Class 8: Gradient paints

Procedural way of defining spatially varying colors

2D map + color ramp

• Linear gradient

• Radial gradient

Mesh gradients

• Gouraud shaded triangle mesh

• Coons patch mesh

• Tensor-product patch mesh

Assignment 3 posted: transparency and gradients

17

Class 8: Gradient paints

Procedural way of defining spatially varying colors

2D map + color ramp

• Linear gradient

• Radial gradient

Mesh gradients

• Gouraud shaded triangle mesh

• Coons patch mesh

• Tensor-product patch mesh

Assignment 3 posted: transparency and gradients

17

Class 9: Resultants and implicit curves

Moving towards an implicit test for intersections

• Avoid costly root-finding

Implicit form of parametric polynomial curves

Resultant

• Sylvester form

• Cayley-Bezout form

Affine implicitization

18

Class 9: Resultants and implicit curves

Moving towards an implicit test for intersections

• Avoid costly root-finding

Implicit form of parametric polynomial curves

Resultant

• Sylvester form

• Cayley-Bezout form

Affine implicitization

18

Class 9: Resultants and implicit curves

Moving towards an implicit test for intersections

• Avoid costly root-finding

Implicit form of parametric polynomial curves

Resultant

• Sylvester form

• Cayley-Bezout form

Affine implicitization

18

Class 9: Resultants and implicit curves

Moving towards an implicit test for intersections

• Avoid costly root-finding

Implicit form of parametric polynomial curves

Resultant

• Sylvester form

• Cayley-Bezout form

Affine implicitization

18

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 10–11: Differential geometry

Planar parametric curves

Rectification, and arc length

Arc-length parameterization

Curvature, offset, and evolute

Inflections

Double-points

Stroking

19

Class 12: Abstract segments

The design of a segment primitive for rendering

Implicit test instead of root-finding

• Idea fails in general

• But works in a limited region of space

Outside that region, we use simpler tests

• Bounding-box test

• Auxiliary line tests

Assignment 4 posted: implicit intersection tests

20

Class 12: Abstract segments

The design of a segment primitive for rendering

Implicit test instead of root-finding

• Idea fails in general

• But works in a limited region of space

Outside that region, we use simpler tests

• Bounding-box test

• Auxiliary line tests

Assignment 4 posted: implicit intersection tests

20

Class 12: Abstract segments

The design of a segment primitive for rendering

Implicit test instead of root-finding

• Idea fails in general

• But works in a limited region of space

Outside that region, we use simpler tests

• Bounding-box test

• Auxiliary line tests

Assignment 4 posted: implicit intersection tests

20

Class 12: Abstract segments

The design of a segment primitive for rendering

Implicit test instead of root-finding

• Idea fails in general

• But works in a limited region of space

Outside that region, we use simpler tests

• Bounding-box test

• Auxiliary line tests

Assignment 4 posted: implicit intersection tests

20

Class 13: Digital images and anti-aliasing

Proper definition of digital image

Rendering as an approximation problem

Ideal sampling theory

• Introduction to Fourier transforms

• Whittaker-Nyquist-Kotelnikov-Shannon theorem

• Aliasing

Shift-invariant approximation spaces

• Ideal sampling reduces to sinc as generator

• Discussion of the box case

• Both are orthogonal spaces

21

Class 13: Digital images and anti-aliasing

Proper definition of digital image

Rendering as an approximation problem

Ideal sampling theory

• Introduction to Fourier transforms

• Whittaker-Nyquist-Kotelnikov-Shannon theorem

• Aliasing

Shift-invariant approximation spaces

• Ideal sampling reduces to sinc as generator

• Discussion of the box case

• Both are orthogonal spaces

21

Class 13: Digital images and anti-aliasing

Proper definition of digital image

Rendering as an approximation problem

Ideal sampling theory

• Introduction to Fourier transforms

• Whittaker-Nyquist-Kotelnikov-Shannon theorem

• Aliasing

Shift-invariant approximation spaces

• Ideal sampling reduces to sinc as generator

• Discussion of the box case

• Both are orthogonal spaces

21

Class 13: Digital images and anti-aliasing

Proper definition of digital image

Rendering as an approximation problem

Ideal sampling theory

• Introduction to Fourier transforms

• Whittaker-Nyquist-Kotelnikov-Shannon theorem

• Aliasing

Shift-invariant approximation spaces

• Ideal sampling reduces to sinc as generator

• Discussion of the box case

• Both are orthogonal spaces

21

Class 14: Anti-aliasing and texture mapping

The anti-aliasing integral

• Analytic solutions are not possible

Conflation of coverage with opacity

• Problem with correlated mattes

• Problem with gamma correction

Supersampling

• Monte Carlo integration

• Effect of sample distributions on variance

Texturing filtering

• Mipmaps

• Anisotropic filtering

22

Class 14: Anti-aliasing and texture mapping

The anti-aliasing integral

• Analytic solutions are not possible

Conflation of coverage with opacity

• Problem with correlated mattes

• Problem with gamma correction

Supersampling

• Monte Carlo integration

• Effect of sample distributions on variance

Texturing filtering

• Mipmaps

• Anisotropic filtering

22

Class 14: Anti-aliasing and texture mapping

The anti-aliasing integral

• Analytic solutions are not possible

Conflation of coverage with opacity

• Problem with correlated mattes

• Problem with gamma correction

Supersampling

• Monte Carlo integration

• Effect of sample distributions on variance

Texturing filtering

• Mipmaps

• Anisotropic filtering

22

Class 14: Anti-aliasing and texture mapping

The anti-aliasing integral

• Analytic solutions are not possible

Conflation of coverage with opacity

• Problem with correlated mattes

• Problem with gamma correction

Supersampling

• Monte Carlo integration

• Effect of sample distributions on variance

Texturing filtering

• Mipmaps

• Anisotropic filtering

22

Class 15–16: Acceleration data structures

Classical acceleration data structures

• Space partition

• Quadtree, K-d tree, and BSP

• Bounding volume hierarchy

• R-tree

Specific for vector graphics

• Adaptation of quadtree and R-tree

• Shortcut tree

• Shortcut regular grid

Assignment 5 posted: acceleration

23

Class 15–16: Acceleration data structures

Classical acceleration data structures

• Space partition

• Quadtree, K-d tree, and BSP

• Bounding volume hierarchy

• R-tree

Specific for vector graphics

• Adaptation of quadtree and R-tree

• Shortcut tree

• Shortcut regular grid

Assignment 5 posted: acceleration

23

Class 15–16: Acceleration data structures

Classical acceleration data structures

• Space partition

• Quadtree, K-d tree, and BSP

• Bounding volume hierarchy

• R-tree

Specific for vector graphics

• Adaptation of quadtree and R-tree

• Shortcut tree

• Shortcut regular grid

Assignment 5 posted: acceleration

23

Class 15–16: Acceleration data structures

Classical acceleration data structures

• Space partition

• Quadtree, K-d tree, and BSP

• Bounding volume hierarchy

• R-tree

Specific for vector graphics

• Adaptation of quadtree and R-tree

• Shortcut tree

• Shortcut regular grid

Assignment 5 posted: acceleration

23

Class 17: Typesetting

History of typesetting

• Calligraphy

• Gutenberg’s printing press

Unicode

Fonts

• Metafont, TTF, Type 1, OpenType

• Metrics, shaping, kerning, ligatures

• Hinting, ClearType

Paragraph

• Hyphenation and justification

• Seminal work by Knuth and Plass [1981]

• Micro-typography

24

Class 17: Typesetting

History of typesetting

• Calligraphy

• Gutenberg’s printing press

Unicode

Fonts

• Metafont, TTF, Type 1, OpenType

• Metrics, shaping, kerning, ligatures

• Hinting, ClearType

Paragraph

• Hyphenation and justification

• Seminal work by Knuth and Plass [1981]

• Micro-typography

24

Class 17: Typesetting

History of typesetting

• Calligraphy

• Gutenberg’s printing press

Unicode

Fonts

• Metafont, TTF, Type 1, OpenType

• Metrics, shaping, kerning, ligatures

• Hinting, ClearType

Paragraph

• Hyphenation and justification

• Seminal work by Knuth and Plass [1981]

• Micro-typography

24

Class 17: Typesetting

History of typesetting

• Calligraphy

• Gutenberg’s printing press

Unicode

Fonts

• Metafont, TTF, Type 1, OpenType

• Metrics, shaping, kerning, ligatures

• Hinting, ClearType

Paragraph

• Hyphenation and justification

• Seminal work by Knuth and Plass [1981]

• Micro-typography

24

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 18: Stroked primitives

Definition

• Dashing and decorations

Two different approaches to rendering

• Using distance to generator

• Converting to filled primitives

Two conversion methods

• Flattening the generator

• Outputting curved outlines

Required approximations

• To arc length

• To offset and evolute

25

Class 19: Screen-space effects

Blur

• Direct convolution

• In frequency domain

• Recursive filter

• Monte Carlo

Clipping

• Per pixel or per sample

• Vatti’s algorithm [1992]

26

Class 19: Screen-space effects

Blur

• Direct convolution

• In frequency domain

• Recursive filter

• Monte Carlo

Clipping

• Per pixel or per sample

• Vatti’s algorithm [1992]

26

Class 20: Other rendering algorithms

Active edge list algorithm [1967]

NVPR [2012]

27

Old-school graphics

Computer
Graphics

Software

Mathematics

Hardware

Displays from 1980–1990

CGA (Color Graphics Array) (1981)

• 16KB of video memory

• Text: 80× 25 with 8× 8 characters

• Graphics: 320× 200 4 bpp, 640× 200 1bpp

VGA (Video Graphics Array) (1987)

• 256KB of video memory

• Text mode 80× 25 with 9× 16 characters

• Graphics: 320× 240 8bpp, 640× 480 4bpp

SVGA (Super Video Graphics Array) (1989)

• Graphics: 800× 600 4bpp, 640× 480 8bpp

29

Displays from 1980–1990

CGA (Color Graphics Array) (1981)

• 16KB of video memory

• Text: 80× 25 with 8× 8 characters

• Graphics: 320× 200 4 bpp, 640× 200 1bpp

VGA (Video Graphics Array) (1987)

• 256KB of video memory

• Text mode 80× 25 with 9× 16 characters

• Graphics: 320× 240 8bpp, 640× 480 4bpp

SVGA (Super Video Graphics Array) (1989)

• Graphics: 800× 600 4bpp, 640× 480 8bpp

29

Displays from 1980–1990

CGA (Color Graphics Array) (1981)

• 16KB of video memory

• Text: 80× 25 with 8× 8 characters

• Graphics: 320× 200 4 bpp, 640× 200 1bpp

VGA (Video Graphics Array) (1987)

• 256KB of video memory

• Text mode 80× 25 with 9× 16 characters

• Graphics: 320× 240 8bpp, 640× 480 4bpp

SVGA (Super Video Graphics Array) (1989)

• Graphics: 800× 600 4bpp, 640× 480 8bpp

29

Screen resolution

SXGA
1280 × 1024

QSXGA
2560 × 2048

QVGA
320 × 240

1280 × 960

VGA
640 × 480

PAL
768 × 576

SVGA
800 × 600

XGA
1024 × 768

SXGA+
1400 × 1050

UXGA
1600 × 1200

QXGA
2048 × 1536

1152 × 768

1440 × 960

1440 × 900

CGA
320 × 200

WQXGA
2560 × 1600

1366 × 768

WXGA
1280 × 768

WSVGA
1024 × 600

HD 720
1280 × 720

WUXGA
1920 × 1200

HD 1080
1920 × 1080

WVGA
800 × 480

FWVGA
854 × 480

1280 × 854

WXGA
1280 × 800 WSXGA+

1680 × 1050

2K
2048 × 1080

5:4 4:3

3:2 8:5
(16:10)

5:3 16:9

17:9

3MP1MP 2MP

4K
3840×2160

5K
5120×28808MP

30

Text mode

31

Code page 437

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0_
NUL
0000

0

☺
263A

1

☻
263B

2

♥
2665

3

♦
2666

4

♣
2663

5

♠
2660

6

•
2022

7

◘
25D8

8

○

25CB

9

◙
25D9

10

♂
2642

11

♀
2640

12

♪
266A

13

♫
266B

14

☼
263C

15

1_
►

25BA

16

◄
25C4

17

↕
2195

18

‼
203C

19

¶
00B6

20

§
00A7

21

▬
25AC

22

↨
21A8

23

↑

2191

24

↓
2193

25

→
2192

26

←

2190

27

∟
221F

28

↔
2194

29

▲
25B2

30

▼

25BC

31

2_
SP
0020

32

!
0021

33

"
0022

34

#
0023

35

$
0024

36

%
0025

37

&
0026

38

'
0027

39

(
0028

40

)
0029

41

*
002A

42

+
002B

43

,
002C

44

-
002D

45

.
002E

46

/
002F

47

3_
0

0030

48

1
0031

49

2
0032

50

3
0033

51

4
0034

52

5
0035

53

6
0036

54

7
0037

55

8
0038

56

9
0039

57

:
003A

58

;
003B

59

<
003C

60

=
003D

61

>
003E

62

?
003F

63

4_
@

0040

64

A
0041

65

B
0042

66

C
0043

67

D
0044

68

E
0045

69

F
0046

70

G
0047

71

H
0048

72

I
0049

73

J
004A

74

K
004B

75

L
004C

76

M
004D

77

N
004E

78

O
004F

79

5_
P

0050

80

Q
0051

81

R
0052

82

S
0053

83

T
0054

84

U
0055

85

V
0056

86

W
0057

87

X
0058

88

Y
0059

89

Z
005A

90

[
005B

91

\
005C

92

]
005D

93

^
005E

94

_
005F

95

6_
`

0060

96

a
0061

97

b
0062

98

c
0063

99

d
0064

100

e
0065

101

f
0066

102

g
0067

103

h
0068

104

i
0069

105

j
006A

106

k
006B

107

l
006C

108

m
006D

109

n
006E

110

o
006F

111

7_
p

0070

112

q
0071

113

r
0072

114

s
0073

115

t
0074

116

u
0075

117

v
0076

118

w
0077

119

x
0078

120

y
0079

121

z
007A

122

{
007B

123

|
007C

124

}
007D

125

~
007E

126

⌂
2302

127

32

CGA text user interface

33

Code page 437

8_
Ç

00C7

128

ü
00FC

129

é
00E9

130

â
00E2

131

ä
00E4

132

à
00E0

133

å
00E5

134

ç
00E7

135

ê
00EA

136

ë
00EB

137

è
00E8

138

ï
00EF

139

î
00EE

140

ì
00EC

141

Ä
00C4

142

Å
00C5

143

9_
É

00C9

144

æ
00E6

145

Æ
00C6

146

ô
00F4

147

ö
00F6

148

ò
00F2

149

û
00FB

150

ù
00F9

151

ÿ
00FF

152

Ö
00D6

153

Ü
00DC

154

¢
00A2

155

£
00A3

156

¥
00A5

157

₧
20A7

158

ƒ
0192

159

A_
á

00E1

160

í
00ED

161

ó
00F3

162

ú
00FA

163

ñ
00F1

164

Ñ
00D1

165

ª
00AA

166

º
00BA

167

¿
00BF

168

⌐
2310

169

¬
00AC

170

½
00BD

171

¼
00BC

172

¡
00A1

173

«
00AB

174

»
00BB

175

B_
░

2591

176

▒
2592

177

▓
2593

178

│
2502

179

┤
2524

180

╡
2561

181

╢
2562

182

╖
2556

183

╕
2555

184

╣
2563

185

║
2551

186

╗
2557

187

╝
255D

188

╜
255C

189

╛
255B

190

┐
2510

191

C_
└

2514

192

┴
2534

193

┬
252C

194

├
251C

195

─
2500

196

┼
253C

197

╞
255E

198

╟
255F

199

╚
255A

200

╔
2554

201

╩
2569

202

╦
2566

203

╠
2560

204

═
2550

205

╬
256C

206

╧
2567

207

D_
╨

2568

208

╤
2564

209

╥
2565

210

╙
2559

211

╘
2558

212

╒
2552

213

╓
2553

214

╫
256B

215

╪
256A

216

┘
2518

217

┌
250C

218

█
2588

219

▄
2584

220

▌
258C

221

▐
2590

222

▀
2580

223

E_
α

03B1

224

ß
00DF

225

Γ
0393

226

π
03C0

227

Σ
03A3

228

σ
03C3

229

µ
00B5

230

τ
03C4

231

Φ
03A6

232

Θ
0398

233

Ω
03A9

234

δ
03B4

235

∞
221E

236

φ
03C6

237

ε
03B5

238

∩
2229

239

F_
≡

2261

240

±
00B1

241

≥
2265

242

≤
2264

243

⌠
2320

244

⌡
2321

245

÷
00F7

246

≈
2248

247

°
00B0

248

∙
2219

249

·
00B7

250

√
221A

251

ⁿ
207F

252

²
00B2

253

■

25A0

254
00A0

255

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

NBSP

34

VGA textual user interface

35

ASCII Art

/T /I

/ |/ | .-~/

T\ Y I |/ / _

/T | \I | I Y.-~/

I l /I T\ | | l | T /

T\ | \ Y l /T | \I l \ ` l Y

__ | \l \l \I l __l l \ ` _. |

\ ~-l `\ `\ \ \\ ~\ \ `. .-~ |

\ ~-. "-. ` \ ^._ ^. "-. / \ |

.--~-._ ~- ` _ ~-_.-"-." ._ /._ ." ./

>--. ~-. ._ ~>-" "\\ 7 7]

^.___~"--._ ~-{ .-~ . `\ Y . / |

<__ ~"-. ~ /_/ \ \I Y : |

^-.__ ~(_/ \ >._: | l______

^--.,___.-~" /_/ ! `-.~"--l_ / ~"-.

(_/ . ~(/' "~"--,Y -=b-. _)

(_/ . \ : / l c"~o \

\ / `. . .^ _.-~"~--.)

(_/ . ` / / !)/

/ / _. '. .': / '

~(_/ . / _ ` .-<_

/_/ . ' .-~" `. / \ \ ,z=.

~(/ ' : | K "-.~-.______//

"-,. l I/ _ __{--->._(==.

//(\ < ~"~" //

/' /\ \ \ ,v=. ((

.^. / /\ " }__ //===- `

/ / ' ' "-.,__ {---(==-

.^ ' : T ~" ll -Row

/ . . . : | :! \\

(_/ / | | j-" ~^

~-<_(_.^-~" 36

ASCII Art

37

Rogue (1980)

38

3D monster maze (1981)

39

3D monster maze (1981)

40

CGA graphical user interface

41

SVGA graphical user interface

42

Asteroids (1979)

43

Battlezone (1980)

44

Battlezone (1980)

45

Graphics primitives

The screen can be seen as a W × H matrix of pixels

• Pixel at coordinates (x, y) has color c

Assume we have two graphics primitives

se t_p i xe l (img , x , y , c)

h l ine (img , x1 , x2 , y , c)

How do we

• draw an arbitrary line?

• fill an arbitrary polygon?

46

Graphics primitives

The screen can be seen as a W × H matrix of pixels

• Pixel at coordinates (x, y) has color c

Assume we have two graphics primitives

se t_p i xe l (img , x , y , c)

h l ine (img , x1 , x2 , y , c)

How do we

• draw an arbitrary line?

• fill an arbitrary polygon?

46

Graphics primitives

The screen can be seen as a W × H matrix of pixels

• Pixel at coordinates (x, y) has color c

Assume we have two graphics primitives

se t_p i xe l (img , x , y , c)

h l ine (img , x1 , x2 , y , c)

How do we

• draw an arbitrary line?

• fill an arbitrary polygon?

46

Graphics primitives

The screen can be seen as a W × H matrix of pixels

• Pixel at coordinates (x, y) has color c

Assume we have two graphics primitives

se t_p i xe l (img , x , y , c)

h l ine (img , x1 , x2 , y , c)

How do we

• draw an arbitrary line?

• fill an arbitrary polygon?

46

Line drawing

Bresenham, J. E. 1965. “Algorithm for computer control of a digital

plotter”. IBM Systems Journal.

Integer endpoints

Incremental

• No divisions

• (almost) No multiplications

Leave no gaps

47

Line drawing

Bresenham, J. E. 1965. “Algorithm for computer control of a digital

plotter”. IBM Systems Journal.

Integer endpoints

Incremental

• No divisions

• (almost) No multiplications

Leave no gaps

47

Line drawing

Bresenham, J. E. 1965. “Algorithm for computer control of a digital

plotter”. IBM Systems Journal.

Integer endpoints

Incremental

• No divisions

• (almost) No multiplications

Leave no gaps

47

Line drawing

Bresenham, J. E. 1965. “Algorithm for computer control of a digital

plotter”. IBM Systems Journal.

Integer endpoints

Incremental

• No divisions

• (almost) No multiplications

Leave no gaps

47

Line drawing

(x0, y0)

(x1, y1)

(x, y)

x − x0

y − y0
=

x1 − x0

y1 − y0

(y1 − y0)(x − x0)− (x1 − x0)(y − y0) = 0

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

48

Line drawing

(x0, y0)

(x1, y1)

(x, y)

x − x0

y − y0
=

x1 − x0

y1 − y0

(y1 − y0)(x − x0)− (x1 − x0)(y − y0) = 0

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

48

Line drawing

(x0, y0)

(x1, y1)

(x, y)

x − x0

y − y0
=

x1 − x0

y1 − y0

(y1 − y0)(x − x0)− (x1 − x0)(y − y0) = 0

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

48

Line drawing

(x0, y0)

(x1, y1)

(x, y)

x − x0

y − y0
=

x1 − x0

y1 − y0

(y1 − y0)(x − x0)− (x1 − x0)(y − y0) = 0

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

48

Line drawing

(x0, y0)

(x1, y1)

(x, y)

x − x0

y − y0
=

x1 − x0

y1 − y0

(y1 − y0)(x − x0)− (x1 − x0)(y − y0) = 0

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

48

Line drawing

(x0, y0)

(x1, y1)

(x, y)

x − x0

y − y0
=

x1 − x0

y1 − y0

(y1 − y0)(x − x0)− (x1 − x0)(y − y0) = 0

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

48

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

(x0, y0)

(x1, y1)

`(x, y) = 2dy (x − x0)− 2dx (y − y0) = 0

`(x0, y0) = `(x1, y1) = 0 `(x0 +
1
2 , y0 +

1
2) = dy − dx

`(x + 1, y)− `(x, y) = 2dy `(x, y + 1)− `(x, y) = −2dx

49

Line drawing

l oca l funct ion l i ne x (img , x1 , y1 , x2 , y2 , s e t _p i xe l)

l oca l dx , dy = x2 − x1 , y2 − y1

l oca l sx , sy = s ign (dx) , s ign (dy)

dx , dy = sx * dx , sy * dy

assert (dx >= dy)

l oca l f = dy − dx

dx , dy = dx *2 , dy*2
l oca l x , y = x1 , y1

se t _p i xe l (img , x , y)

while x ~= x2 do

x = x + sx

f = f + dy

i f f > 0 then

f = f − dx

y = y + sy

end

se t_p i xe l (img , x , y)

end

end

x

y

50

Line drawing

l oca l funct ion se t_p i xe l y x (img , y , x)

se t _p i xe l (img , x , y)

end

funct ion l i n e (img , x1 , y1 , x2 , y2)

l oca l dx , dy = math.abs (x2−x1) , math.abs (y2−y1)

i f dx > dy then

l i ne x (img , x1 , y1 , x2 , y2 , s e t _p i xe l)

else

l i ne x (img , y1 , x1 , y2 , x2 , s e t _p i xe l y x)

end

end

51

Polygon filling

(?) Wylie, C. et al. 1967. “A hidden surface algorithm for computer

generated halftone pictures”. Proceedings Fall Joint Computer

Conference.

Integer endpoints

Incremental

• No divisions

• (almost) No multiplications

Leave no gaps

Use spatial coherence

52

Polygon filling

(?) Wylie, C. et al. 1967. “A hidden surface algorithm for computer

generated halftone pictures”. Proceedings Fall Joint Computer

Conference.

Integer endpoints

Incremental

• No divisions

• (almost) No multiplications

Leave no gaps

Use spatial coherence

52

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

Polygon filling

53

	Introduction
	Evaluation
	Overview of lectures
	Old-school graphics

