
Schemata Theory for the Real Coding and Arithmetical
Operators

Diego F. Nehab
Computer Science Department

Princeton University

diego@cs.princeton.edu

Marco Aurélio C. Pacheco
Applied Computational Intelligence Laboratory
Electrical Engineering Department, PUC-Rio

marco@ele.puc-rio.br

ABSTRACT
The Schemata Theory analyzes the effect of the selection
process, mutation and crossover over the number of individ-
uals that belong to a given schema, within generations. This
analysis considers, in its original form, the binary coding and
operators. In this article, we present an analogous study,
focusing on the real number coding and arithmetical oper-
ators. Unfortunately, the conventional schema definition is
tightly dependent on discrete alphabets. Therefore, follow-
ing a generalization of the concept of schema, we present
a particular definition that suits better the continuous do-
main. Using this new definition, we reach an expression sim-
ilar to the Fundamental Theorem of Genetic Algorithms [6]
valid for the real coding of chromosomes.

Keywords
Genetic Algorithms, Schemata Theory, Real Coding

1. INTRODUCTION
Despite empirical evidence showing the good performance of
Genetic Algorithms (GAs), the method has been criticized
for the lack of theoretical foundations supporting the ana-
lytical study of its convergence. John Holland created the
Schemata Theory [6] in an attempt to provide such foun-
dations. Although his framework fails to explain the long
term behavior of GAs, it provides an overall picture of how
the population of chromosomes evolves from one generation
to the following. Markov chains analysis has been applied
later to study the long term behavior of GAs [3].

Holland’s theory culminates in a mathematical expression
known as the Fundamental Theorem of Genetic Algorithms.
The theorem describes the variation on the population of
chromosomes belonging to a given schema, from generation
to generation, taking into account the selection process, the
binary crossover and mutation.

To Appear: SAC’04, March 14–17, 2004, Nicosia, Cyprus

The analysis of this formula leads to the conclusion that
low specificity schemata, with short length and above aver-
age fitness tend to grow exponentially in number during the
first generations. These schemata, thus, quickly dominate
the population, and constitute the material over which the
algorithm will operate.

An equivalent of the Schemata Theory does not follow im-
mediately for the real coding because this representation and
its operators are not related to those commonly used over
discrete codings. Furthermore, the conventional schema for-
mulation, on which the entire theory is based, defines con-
cepts such as order and length which are intuitive for dis-
crete alphabets but have no obvious meaning for the real
coding because the floating-point alphabet is virtually non-
enumerable.

In fact, Holland argued that low cardinality alphabets should
be preferred to high cardinality alphabets. Not only has
this claim been challenged theoretically [1], but empirical
results [7] show that the floating-point representation actu-
ally works better for continuous domain problems.

This article attempts to conciliate theoretical and empiri-
cal results by proposing a new study of the Real Coding.
Recent work [5] has studied non-linear representations of
chromosomes. We do not discuss the validity of the Schema
Theory. Instead, we focus on the development of a Funda-
mental Theorem for the Real Coding and, by analyzing the
new theorem formulation, draw the appropriate conclusions.

1.1 New schema definition
The performance analysis of the real representation seems,
at first, hopeless. The difficulty comes from the fact that the
usual schema definition depends on the use of discrete alpha-
bets for chromosome representation. Although one can state
that any representation used by a computer will be discrete
to some extent, it is not intuitive to consider a floating-point
number as being discrete. Therefore, we move to a new def-
inition of schema, one that is abstract enough so as not to
tie us to discrete alphabets.

Definition 1. Let U be the search space of a problem, so

that every chromosome u is an element of U . A Schema is

a subspace H ⊂ U . If h ∈ H, we say that H represents h.



Figure 1: Examples of Schemata in R
3.

Note that Definition 1 accepts the usual schema definition
as a special case. Moreover, it allows for a new definition,
more useful for the analysis of the real representation; a
definition we will use throughout the text. Since, in the
real representation, U is a subspace of R

n, it is natural to
define H as a region inside U . Some examples are seen in
Figure 1. More formally:

Definition 2. For the real representation, H is a hyper-

cube in U , defined by the coordinates si of one of its vertexes

and the widths li through which it runs in each dimension i
of U , starting at si. Moreover, we define Hi as the inter-

val [si, si + li].

The term width will be used throughout the text to refer to
the meaning given by Definition 2. The word length seems
more appropriate, but we will not use it to avoid confusion
with the meaning the original Schema Theory gives for it,
which makes no sense for the new definition of schema.

Although the concept of order used by the original theory
also loses its meaning with the new definition, the prop-
erty of specificity remains valid. We define low specificity
schemata as those for which the li are close to the domain
limits, since they cover a big part of the search space. Con-
versely, if the li are small values, we say that H is highly
specific.

Therefore, instead of having two parameters to characterize
schemata, order and length, our study will be based on a
single parameter: the schema’s width.

2. SCHEMATA EVOLUTION ANALYSIS
With the new definition in hand, we proceed to the analysis
of the effect that the operations performed over the popula-
tion P have on the number of elements in a schema. In the
following analysis, all genes are considered to be indepen-
dent. Therefore, we can freely change the relative widths of
their domains and work with intervals normalized to [0, 1].

2.1 The effect of the selection process
Suppose that, in generation t, there are m(H, t) individuals
of schema H in population P. Using the traditional roulette
wheel selection method, a chromosome h is selected for re-
production with probability Ph = fh/

P

p∈P
fp, where fi is

the fitness of element i. For each element being selected, the
probability that it belongs to schema H is given by:

P(H) =

X

h∈H

fh

X

p∈P

fp

Hence, for a population with n individuals, the predicted
number of elements of a given schema in generation t + 1
can be written as:

m(H, t+1) = n·P(H) = n·

X

h∈H

fh

X

p∈P

fp

= m(H, t)·

X

h∈H

fh

m(H, t)

X

p∈P

fp

n

= m(H, t) ·
fH

fP

(1)

As we expected, Equation 1 is exactly the same as that
reached for the binary representation [4]. This is no coinci-
dence, since the only properties used in the development of
Equation 1 hold for both the new and the old definitions of
schema.

The expressions describing the effects of the arithmetical op-
erations, as well as the conventional crossover effect, how-
ever, are affected by the change in the definition of schema,
and require new analysis.

2.2 Arithmetical crossover analysis
The real representation of chromosomes is commonly used
in conjunction with the arithmetical crossover [2, 7]. This
operator generates as the offspring of two selected chromo-
somes a new chromosome corresponding to the average of
the values of its parents. We proceed to the analysis of this
operator over the population of a schema. Initially, we will
be considering the special case of one single variable in U .
Later, in Section 2.4, the results are extended to any number
of variables.

We want to determine the probability that the result of the
arithmetical crossover of an element of H with an element
of U remains in H. That is, taken h ∈ H and u ∈ U at
random, we are looking for a function c(l) = P[h+u

2
∈ H],

where l is the width of H.

Assuming that the populations of H and U are uniformly
distributed1, the mathematical expression for c(l) can be
obtained from the following equation:

c(l) =
1

1 − l

Z

1−l

0

1

l

Z s+l

s



min
ˆ

2(s + l) − h, 1
˜

− max
ˆ

2s − h, 0
˜

ff

dh ds (2)

1A simplifying assumption that only holds for the initial
population but that was also followed during the develop-
ment of the original study.



Program 1 Numeric simulation of c(l). For NL values of l
equally spaced in [0, 1], we choose TS random values for s
in [0, 1− l]. Then, after choosing h in [s, s+ l] and u in [0, 1],
we test if the average lies in [s, s + l].

#define uniform(s_, l_) (s_ + \
(((double)l_)*random())/RAND_MAX)

#define in(a, b, x) (((x) > (a)) && ((x) < (b)))
#define NS 1000
#define TS 100000
#define NL 50
int main(void)
{

double l, s, x;
long c, i, t;
for (l = 0.0; l <= 1.0; l += 1.0/NL) {

c = 0;
t = 0;
for (i = 0; i < TS; i++) {

s = uniform(0.0, 1.0-l);
x = (uniform(s, l)

+ uniform(0.0, 1.0))/2.0;
c += in(s, s+l, x);
t++;

}
printf("%f %f\n", l, ((double) c)/t);

}
}

Equation 2 can be better understood with the help of Fig-
ure 2. Initially, we choose h ∈ H, or in other words,
s ≤ h ≤ s + l. As we see in Figure 2, if we want to
choose u ∈ U such that s ≤ h+u

2
≤ s + l, we must have

a ≤ u ≤ b. Since u ∈ [0, 1], the intersection of the two con-
ditions leads to max(0, a) ≤ u ≤ min(1, b), where a = 2s−h
and b = 2(s + l) − h. It remains to integrate over all possible
values of h and all possible values of s, as seen in Equation 2.

a b´

1s+l

s0

b

h

Figure 2: Interpretation of Equation 2. In the fig-
ure, min(1, b) = b′ = 1, so that u is allowed to vary in
the interval [a, b′].

Determining an analytical solution for Equation 2, however,
involves considerable work, since there are many different
cases to be considered separately. Program 1 generates a
sequence of points that approximates c(l) for several values
of l. The program simulates the random choice of elements
from H and U , determining if their average lies in H. Fig-
ure 3 shows the result of the simulation, and gives the first
picture of c(l), plotted along with the analytical solution
obtained below.

Fortunately, there is an equivalent formulation for Equa-
tion 2 that is easier to solve. Let H and U be random vari-
ables describing the distributions of the chromosome popu-
lations in H and U , respectively. Let Z = H + U be another

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 3: c(l). The dots represent the sequence of
values generated by Program 1. The continuous line
represents the analytic solution given by Equation 5.

random variable, describing the sum distribution. We look
for an expression describing the probability:

c(l) = P[s ≤ Z

2
≤ s + l]

= P[2s ≤ Z ≤ 2(s + l)]

= P[Z ≤ 2(s + l)] − P[Z ≤ 2s]

(3)

In order to solve Equation 3, we need to determine an ex-
pression for P[Z ≤ z]. This expression is given by the solu-
tion of Equation 4, where P[H = x] is the probability density
function of H and P[U ≤ x] is the cumulative probability
function of U.

P[Z ≤ z] = P[H + U ≤ z]

=

Z

∞

−∞

P[H = x]P[U ≤ z − x] dx
(4)

Equation 4 is clearly a convolution integral and can be solved
by parts, with the division of the integration interval into
simpler subintervals. Figure 4 shows the appropriate divi-
sions.

s+l+1s s+l

I V

(a) I and V
s+l+1s s+l

II III IV

(b) II to IV

Figure 4: Integration subintervals for Equation 4.
For case I, z < s, for case V, z > s + l + 1. For
cases II, III and IV, z lies in [s, s + l], [s + l, s + 1] and
[s + 1, s + l + 1], respectively.

Equations I to V give the different expressions for the con-
volution integral P[Z ≤ z], as a function of s and l, for each
of the different subintervals of the variable z, as shown in
Figure 4.

P[Z ≤ z](s, l) = 0 (I)



P[Z ≤ z](s, l) =

Z z

s

1

l
(z − x) dx (II)

P[Z ≤ z](s, l) =

Z s+l

s

1

l
(z − x) dx (III)

P[Z ≤ z](s, l) =

Z z−1

s

1

l
dx +

Z s+l

z−1

1

l
(z − x) dx (IV)

P[Z ≤ z](s, l) = 1 (V)

After solving all integrals in Equations I to V, we need to
analyze the value of the expression P[Z ≤ z] for z = 2s
and z = 2(s + l) before substitution in Equation 3. In each
case, we integrate over all values of s, to reach one-variable
functions of the width l of the schema. Since the integration
limits are themselves functions of l, the choice of which of
the cases I to V will be used for z = 2s and z = 2(s+ l) also
depends on l.

0 ≤ l <
1

2
=⇒

(

P[Z ≤ 2s] = 1

1−l

R l

0
{II}ds +

R

1−l

l
{III}ds

P[Z ≤ 2(s + l)] = 1

1−l

R

1−2l

0
{III} ds +

R

1−l

1−2l
{IV}ds

1

2
≤ l < 1 =⇒

(

P[Z ≤ 2s] = 1

1−l

R

1−l

0
{II} ds

P[Z ≤ 2(s + l)] = 1

1−l

R

1−l

0
{V}ds

After substitution in Equation 3, we reach the final expres-
sion for c(l). The graph for the analytical solution of c(l) is
shown as the continuous line of Figure 3.

c(l) =

8

>

>

>

<

>

>

>

:

6l − 7l2

3(1 − l)
, 0 ≤ l < 1

2
,

5l − l2 − 1

3l
, 1

2
≤ l < 1.

(5)

The graph of Equation 5 as seen in Figure 3 matches the re-
sults obtained with the simulation. As we could expect, the
function is increasing on the width of the schema, ranging
from zero to one as the width of the schema grows. In other
words, low specificity schemata (with large widths) have a
better chance surviving the arithmetical crossover.

2.3 One-point crossover
Whenever a problem involves several variables, a chromo-
some is defined as a string of genes, each gene representing
the value of one of the variables considered in the problem.
In these cases, it is common to use another operator, known
as one point crossover. The operator acts as shown in Fig-
ure 5.

We have to analyze the probability that a or b, the chromo-
somes generated from a chromosome h of H and a random
partner u taken from U , will be a member of H. For that,
we must ensure that all genes ai, for instance, fall within

� � � � � � � �� � � � � � � �

gene

h p

u

(a)

� � � � � �� � � � � �
� � �� � � 41 2 3 5

genchromosome

a

b

(b)

Figure 5: One-point crossover. (a) A random site p
is chosen and the parent chromosomes h and u are
cut at that point. (b) The recombination of the
parent chromosomes yields two new chromosomes, a
and b.

their respective intervals [si, si + li], as defined by H. As-
suming ui is a random value uniformly distributed in [0, 1],
the probability that it lies in Hi is given by li. It follows
that, if p is the site chosen for the cut operation and n is
the number of variables in U :

P[a ∈ H](p) =

p
Y

i=1

li

from which we deduce the final relation, taking into consid-
eration all possible values for p:

P[a ∈ H] =
1

n − 1

n−1
X

p=1

p
Y

i=1

li (6)

To reach a simpler expression for Equation 6, we can restrict
the analysis to schemata for which all li are equal. In that
case, when li = l, we reach the following expression:

P[a ∈ H] =
1

n − 1

n−1
X

p=1

p
Y

i=1

l

=
1

n − 1

n−1
X

p=1

lp =
(ln − l)

(n − 1)(l − 1)

(7)

0.5 1 l

0.5

1

0.5 1 l

0.5

1

0.5 1 l

0.5

1

0.5 1 l

0.5

1

Figure 6: The probability that an individual will sur-
vive one-point crossover as a function of the schema
width l, given by Equation 7, for 2, 4, 8 and 16 genes.

Figure 6 shows the graph for Equation 7 for several different
values of n. Once again, we conclude that low specificity
schemata are more likely to survive the crossover operation.



2.4 Arithmetical crossover revisited
In Section 2.2, we restricted our analysis of the arithmetical
crossover to one gene chromosomes. However, the gener-
alization of these results is simple, since the operator acts
independently on each gene. We simply change the condi-
tion s ≤ h+u

2
≤ s + l to si ≤

hi+ui

2
≤ si + li. That way we

can make sure that each gene i of the result belongs to the
interval Hi of the schema.

Using the expression for c(l) given by Equation 5, we reach
the general expression for the arithmetical crossover, as fol-
lows:

c(H) = P[h+u

2
∈ H] =

n
Y

i=1

c(li) (8)

Once again, the expression can be better visualized if we
force li = l. In that case, it reduces to Equation 9, the
graph of which is seen in Figure 7:

c(H) = cn(l) (9)

0.5 1 l

0.5

1

0.5 1 l

0.5

1

0.5 1 l

0.5

1

0.5 1 l

0.5

1

Figure 7: The probability that an individual will
survive arithmetical crossover as a function of the
schema width l, given by Equation 9, for 1, 2, 8 and
16 genes.

2.5 Creep mutation
Another commonly used operator is known as creep muta-

tion [2, 7], and consists of the addition of a random value
to a selected chromosome. In general, the added value is
restricted to a known interval [−d, d]. We wish to analyze
the effect of this operator over the number of individuals
of a schema in the population. The problem is very simi-
lar to that of Section 2.2. Therefore, we will use the same
technique to solve it.

ba´

s h0 1

s+l

dd

a

Figure 8: Interpretation of Equation 10. For the
figure, max(s, p − d) = a′ = s, so that p + m can vary
in [a’,b].

Program 2 Numeric simulation of u(t). For l in [0, 20d], TD
random values of p and d are chosen. The number of sums
falling within [0, l] is then determined.

#define uniform(s_, l_) (s_ + \
(((double)l_)*random())/RAND_MAX)

#define in(a, b, x) (((x) > (a)) && ((x) < (b)))
#define TD 50000
int main(void) {

double l, p, x, dl;
long c, i, t;
for (dl = 0.1; l <= 10.0; l += dl) {

dl += 0.005;
c = 0; t = 0;
for (i = 0; i < TD; i++) {

p = uniform(0.0, l);
x = p + uniform(-1.0, 2.0);
c += in(0.0, l, x); t++;

}
printf("%f %f\n", l, ((double) c)/t);

}
}

Given h in H and a random value m in [−d, d], we look
for an expression giving the probability that h + m belongs
to H. Figure 8 shows the situation to be analyzed.

We notice that the sum p+m spawns the interval [p−d, p+d].
We want a sum such that s ≤ p + m ≤ s + l. Therefore,
the intersection of the two conditions leads to the interval
[max(s, p− d), min(s + l, p + d)]. The length of this interval
is then integrated over all values of p and s.

u(l, d) =

Z

1−l

0

1

1 − l

Z s+l

s

1

l

1

2d

˘

min(s + l, p + d)

− max(s, p − d)
¯

dp ds (10)

A numeric approximation for the solution of Equation 10
can be seen in Figure 9, plotted along with the analytical
solution obtained below. The dots represent the values ob-
tained by the simulation performed by Program 2.

Again, finding an analytic solution by direct integration in-
volves a considerable amount of work, so we prefer the solu-
tion by the alternative convolution formulation. This time,
let D be the random variable for the uniform distribution in
the interval [−d, d]. Since the origin s of the schema makes
no difference for the result, we define H as the random vari-
able uniformly distributed in the interval [0, l]. Now, let
W = H + D. We are want a function describing the proba-
bility

u(l, d) = P[0 ≤ W ≤ l] = P[W ≤ l] − P[W ≤ 0] (11)

The procedure used to find u(l, d) from an expression of
P[W ≤ w] is the same as that followed for the arithmetical
crossover analysis, at the end of which we reach

u(l, d) =

8

>

>

<

>

>

:

l

2d
, 0 ≤ l < d,

2l − d

2l
, l ≥ d.

(12)



2 4 6 8 10

0.2

0.4

0.6

0.8

1

Figure 9: u(t). Parameter t represents the ratio l/d.
The dots are the values obtained by the simulation
performed by Program 2. The continuous line is
a graph of the analytical solution given by Equa-
tion 13.

Observing Equation 12, we realize that it is actually a func-
tion of the ratio t = l/d between the schema width l and
the maximum mutation value d. Rewriting the equation to
replace l/d with t, we reach Equation 13. The graph for this
new formulation can be seen in Figure 9.

u(t) =

8

>

>

<

>

>

:

t

2
, 0 ≤ t < 1,

2t − 1

2t
, l ≥ 1.

(13)

The graph of Equation 13 in Figure 9 perfectly matches the
numeric simulation. We see that u(t) tends to one as t tends
to infinity (l À d). Moreover, as expected, the function goes
to zero when t tends to zero (d À l). Yet again, we conclude
that low specificity schemata have better chances of survival.

3. TRACKING SCHEMATA
In order to better visualize the population of a given schema
throughout several generations, a interactive program was
constructed. The program runs a real-coded genetic algo-
rithm to find the maximum value of the Shaffer’s F6 func-
tion:

F6(x, y) = 0.5 +
sin2

“

p

x2 + y2

”

− 0.5

(1 + 0.001(x2 + y2))2

The F6 function is a a two-dimensional multimodal function
with its global maximum at the origin, commonly used to
test genetic algorithms [2].

The program allows one to choose the schema to be in-
spected, and tracks the percentage of individuals that be-
long to that schema, in all generations of the population.
By inspecting the evolution of the number of individuals of
several schemata, we can confirm, in practice, the theory
that we have developed.

Figure 10 shows the evolution of the population of some
schemata throughout 40 generations. Highest fitness chro-
mosomes lie close to the origin, where the function has its
global maximum. We clearly see that the population is

Figure 10: Percentage of total population belonging
to low specificity schemata (top two) and high speci-
ficity schemata (bottom two), within several gener-
ations.

quickly dominated by schemata representing these chromo-
somes. Comparing the plots in Figures 10, we also note that,
as expected, low specificity schemata grow much faster in
population than high specificity schemata.

4. CONCLUSIONS
The analytical solution to all integrals have been double-
checked with graphs of their numerical solution using the
software Mathematica to make sure they match. The results
seen in Equations 1, 8 and 13, give us a model similar to that
which the Schema Theory provides for the binary coding of
chromosomes. The new model holds for the real coding and
the arithmetical operators. All that is left is to join all
results into a single equation.



Let µ be the probability that a selected chromosome will mu-
tate, and let α be the probability that there will be crossover.
Then, the following equation holds:

m(H, t + 1) ≥

m(H, t) ·
fH

fP

· [1 − α + αc(H)] · [1 − µ + µu(H)] (14)

The qualitative analysis of Equation 14 shows that the con-
clusions reached by the Fundamental Theorem of Genetic
Algorithms also hold for the real representation. That is,
schemata with above average fitness with low specificity tend
to proliferate quickly within generations.

5. REFERENCES
[1] Jim Antonisse. A new interpretation of schema

notation that overturns the binary encoding constraint.
In J. David Schaffer, editor, Proceedings of the Third

International Conference on Genetic Algorithms.
Morgan Kaufmann Publishers, 1989.

[2] Lawrence Davis, editor. Handbook of Genetic

Algorithms. Van Nostrand Reinhold, 1991.

[3] Kenneth A. De Jong, William M. Spears, and Diana F.
Gordon. Using markov chains to analyze GAFOs. In
L. Darrell Whitley and Michael D. Vose, editors,
Foundations of Genetic Algorithms 3, pages 115–137.
Morgan Kaufmann, San Francisco, CA, 1995.

[4] David Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Adison-Wesley,
1989.

[5] William A. Greene. A non-linear schema theorem for
genetic algorithms. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages 189–194.
Morgan Kaufmann, July 2000.

[6] John Holland. Adaptation in Natural and Artificial

Systems. University of Michigan Press, 1975.

[7] Zbigniew Michalewicz, editor. Genetic Algorithms +

Data Structures = Evolution Programs. Springer, 1996.


