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Figure 1: (Left) Previous recursive filtering algorithms use padding to approximate the effect of boundary conditions. When the filter impulse
response decays slowly, the amount of computation over the padding can become prohibitive. (Right) We instead filter infinite extensions
exactly. We do so by first obtaining the correct initial feedbacks at the boundaries using explicit formulas. These formulas were designed for
easy integration into block-parallel algorithms that run on the GPU. Our new algorithms are not only exact, but also the fastest to date.

Abstract

Filters with slowly decaying impulse responses have many uses in
computer graphics. Recursive filters are often the fastest option
for such cases. In this paper, we derive closed-form formulas for
computing the exact initial feedbacks needed for recursive filtering
infinite input extensions. We provide formulas for the constant-
padding (e.g. clamp-to-edge), periodic (repeat) and even-periodic
(mirror or reflect) extensions. These formulas were designed for easy
integration into modern block-parallel recursive filtering algorithms.
Our new modified algorithms are state-of-the-art, filtering images
faster even than previous methods that ignore boundary conditions.

Keywords: parallel recursive filtering, infinite extension, GPUs

Concepts: * Computing methodologies — Image processing;

1 Introduction

Linear time-invariant (LTI) filtering is a fundamental operation in
signal and image processing. In the frequency domain, an LTI
filter multiplies the transform of the input by the filter’s frequency
response. In the time domain, it convolves the input with the filter’s
impulse response. Filters can be designed, for example, to enhance
or attenuate high frequencies, or to eliminate or isolate a particular
frequency band in the input.

Many applications use LTI filters that can be expressed as linear,
constant-coefficient difference equations. Let wg, zx, for k € Z
represent the input and output, respectively. Such filters satisfy

s S
Z QiZk—i = Z biwk—q, with a; and b; design parameters. (1)
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Using standard signal-processing tools, we can decompose (1) into
a convolution pass and a causal/anticausal combination of recursive
filter passes (see [Oppenheim and Schafer 2010, chapter 6]):

Tp = 20¢wk_i, ()

1=—35

T r
Yk = Tk — Zdiykfi and 2z = yi — Zeiszri- 3)

i=1 =1

The convolution (2) has a finite impulse response (FIR) that is given
by the coefficients c;. In contrast, the recursive filters in (3), char-
acterized by the feedback coefficients d; and e;, can have infinite
impulse responses (IIR). The process can be extended from 1D to 2D
by independently filtering all columns and then all resulting rows.

In sequential processing, an input of length n can be filtered in
O(sn + rn) time in the time domain or in O(nlogn) time in the
frequency domain via the fast Fourier transform (FFT). It follows
that we should implement filters with compactly supported impulse
responses directly as convolutions. Otherwise, we can try to repro-
duce the effect of long impulse responses using as few feedback
coefficients as possible and proceed by recursive filtering in the time
domain. If these alternatives are not viable, we should proceed in
the frequency domain using the FFT. The same guidelines apply to
parallel processing on modern GPUs using state-of-the-art convo-
lution, FFT, and recursive filtering algorithms [Podlozhnyuk 2007;
Govindaraju et al. 2008; Nehab et al. 2011].

Recursive filters can be used to invert the effect of direct convolu-
tions. Almost all generalized sampling algorithms depend on this
principle [Nehab and Hoppe 2014]. One of the most important appli-
cations is in image quasi-interpolation, where pre-processing with
recursive filters enables the design of strategies [Unser et al. 1991;
Blu et al. 2001; Condat et al. 2005; Sacht and Nehab 2015] that
significantly outperform those typically used in computer graphics
applications [Catmull and Rom 1974; Duchon 1979; Mitchell and
Netravali 1988]. Recursive filters also play a key role in the optimal
approximation of continuous signals by uniformly sampled data,
in terms of the L? metric [Kajiya and Ullner 1981; Hummel 1983;
Unser and Aldroubi 1994]. This idea forms the basis of algorithms
for optimal image pyramids [Unser et al. 1993], scaling [Unser
et al. 1995a], translation (and rotation) [Unser et al. 1995b], and
derivatives [Condat and Mdller 2011]. In addition, some of the
highest-quality anti-aliasing strategies [McCool 1995; Nehab and
Hoppe 2014] are based on post-processing with recursive filters.
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Figure 2: Infinite extension effect on low-pass filters (left) and high-pass filters (right). Note the different behavior near image boundaries.
(a) Feedback assumed to be zero. (b) Extension with zeros. (c) Periodic extension (repeat). (d) Even-periodic extension (mirror/reflect).

(e) Extension with boundary colors (clamp-to-edge).
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Figure 3: In this example, a texture (a) that was designed for vertical
and horizontal tiling is blurred using a recursive filter. (b) Extending
the image with zero, (c) clamping-to-edge, or (d) enforcing even-
periodicity can cause serious tiling artifacts (centered for clarity).
(e) Respecting the input image periodicity produces correct results.

Another immediate application is in low-pass filtering. Indeed, re-
cursive approximations to Gaussian filtering [van Vliet et al. 1998]
operate in linear time independent of the standard deviation. They
are the best alternative in terms of performance, quality, and sim-
plicity. Moreover, “frequency-selective filters of the lowpass, high-
pass, bandpass, and bandstop types can be obtained from a lowpass
discrete-time filter” [Oppenheim and Schafer 2010, chapter 7].

There is, however, a frequently ignored difficulty. To see it, consider
finite input and output, i.e., k € {0,...,n — 1} in (1)-(3). Itis
clear that (2) depends on out-of-bounds inputs. Even worse, (3)
depends on out-of-bounds outputs. Although assuming the input to
be zero out-of-bounds often makes sense, setting the initial recursive
feedbacks (i.e. outputs) to zero is rarely meaningful. We must be able
to extend the input arbitrarily according to a boundary condition.

The strategy seen in figure 1, where the boundary colors are ex-
tended to infinity, is frequently called “clamp-to-edge”. One of its
advantages is that it avoids mixing values that are not close together.
The downside is that the output does not satisfy the same boundary
condition as the input. Another option is to assume the input is
periodic (figure 5). The periodic extension simply repeats the im-
age, whereas the even-periodic extension reflects the image in each
repetition, as in a mirror. Filtering periodic input results in periodic
output. To preserve even-periodicity, the filter must be symmetric.

The most obvious difference between these extension alternatives
can be seen near output image boundaries. Figure 2 shows that
boundary conditions can cause unrelated data to mix across bound-
aries when low-pass filtering, or create false edges when high-pass
filtering. In other applications, this mixing is not only acceptable
but required. For example, in 360° panoramic images, or in textures
designed to be tiled, the extension must be periodic. This is shown
in figure 3, where blurring an input texture with the wrong extension
causes tiling artifacts. Figure 4 shows that the best extension for
resampling non-periodic input is the even-periodic extension.
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Figure 4: Here, a non-periodic input image (a) is downsampled to
1/8th original resolution and then upsampled back using generalized
kernels that require recursive filtering. The periodic extension (b)
mixes spatially unrelated data. This causes severe ringing near
boundaries. The even-periodic extension (c) avoids the problem.

(c) Reflect

Since each extension has its use, a general solution to this problem
must be found. The traditional approach is as follows. Assume the
impulse response of the filter is essentially zero outside a compact
support from —p to p. Pad the input on either side with p samples
selected according to the chosen boundary condition, then filter the
extended input from —p to n + p — 1 assuming the input and output
are both zero outside this extended range.

The issue with padding is that recursive filters are useful precisely
because they efficiently implement filters with very long impulse
responses. In such cases, respecting boundary conditions becomes
particularly important in preventing visible artifacts. At the same
time, extending the input on all sides by the effective support width
of the impulse response can become computationally prohibitive.

Interestingly, the frequency domain implementation operates on an
infinite periodic extension of the input. When using the discrete
Fourier transform (DFT), the extension is periodic. When using
the type-II discrete cosine transform (DCT), the extension is even-
periodic [Martucci 1994]. This suggests it should be possible to
work with infinite input extensions in the time domain as well!

The difficult part of the problem is determining the initial feedbacks
for the recursive filter passes in (3). Our first key contribution is a
solution to this problem. We present explicit formulas for computing
the initial feedbacks for all infinite extensions seen in figure 2. One
caveat is that our formulas require an additional filtering pass over
the input. Fortunately, parallel recursive filtering algorithms already
perform two passes over the input. By designing our formulas to
depend exclusively on quantities available after the first pass, we
were able to create novel algorithms that filter infinite extensions at
little or no performance penalty. This is our second key contribution.

In summary, we present the first recursive filtering algorithms that
compute the exact filtering of infinite input extensions. Moreover,
our massively parallel implementations run much faster even than
earlier work that ignores the initialization problem at the boundaries.
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2 Related work

Since the impulse response of stable LTI filters decay exponentially,
the contribution of any input element to a given output becomes
negligible as the distance between them increases. Given a specific
filter and a target error bound, it is possible to determine the length
of input padding needed to respect the error bound over the entire
output. This idea is used by Unser et al. [1991] for the initialization
of the parallel decomposition of the fast-decaying recursive filters
used in B-spline interpolation. Unfortunately, the method becomes
impractical in slowly decaying filters (e.g. based on low-pass filters)
or at high bit depths (e.g. in floating-point HDR images) due to the
additional computation required over the long paddings.

As we mentioned in the introduction, the choice of transform defines
the infinite extension implied by the frequency domain implemen-
tation. Our focus in this work is on filters with few feedback coef-
ficients, where the time-domain computation can be significantly
faster (both asymptotically as well as in practice). Additionally, our
method supports constant padding.

Another approach is to interpret (1) as a linear system. The decompo-
sition into the causal and anticausal recursive passes in (3), typically
performed by factoring of the Z-transform of (1), is nothing but an
LU-style factorization of the corresponding (infinite) Toeplitz ma-
trix. In the finite case, the matrix is not Toeplitz, since the imposition
of an input extension disturbs the matrix structure. Nevertheless, we
can obtain an LU -factorization and use it to solve the linear system.
This idea has been used on narrow-support filters in the case of the
even-periodic extension, where coefficients a; are also symmetric
about ¢ = 0 [Weickert et al. 1998; Appleton and Talbot 2003]. The
only inconvenience is that the feedback coefficients d;; and e;x
are now functions of the input index k. Depending on the filter of
interest and the target error bound, we may be able to exploit the
fact that these coefficients converge as fast as the impulse response
decays [Malcolm and Palmer 1974; Nehab and Hoppe 2014].

The final alternative is to compute the exact initialization. Unser
et al. [1991] obtain the exact anticausal initialization for the cascaded
decomposition of cubic B-spline interpolation filters in the even-
periodic extension case (causal initialization is still approximated
by padding). Triggs and Sdika [2006] derive exact initialization
formulas for cascaded causal and anticausal passes in the clamp-
to-edge extension. Our work allows for the exact initialization
of cascaded causal and anticausal passes in two dimensions, under
different infinite extensions, and for filters of any order. Furthermore,
we designed our formulas to integrate seamlessly with state-of-
the-art parallel recursive filtering algorithms. Gastal and Oliveira
[2015] use the exact initialization of first-order filters in the clamp-to-
edge extension to solve the special case of high-order filters whose
parallel decompositions consist of sums of first-order filters (i.e.,
no repeated poles). The initialization of causal-anticausal cascaded
decompositions used by parallel algorithms is much more difficult.

Early work on parallel recursive filtering focused on prefix-sums
(or scans) [Iverson 1962; Stone 1971; Blelloch 1990; Sengupta
et al. 2007; Dotsenko et al. 2008; Merrill and Grimshaw 2009].
Nehab et al. [2011] presented a series of algorithms that combine
previous parallelization strategies [Stone 1973; Kooge and Stone
1973; Sung and Mitra 1986, 1992] with overlapping, a novel 10-
saving procedure that leads to greatly improved performance on
filter cascades. Chaurasia et al. [2015] then generalized for different
cascades types and introduced automatic code generation to explore
the best performing combinations. Maximo [2015] generalized to
combine the recursive filtering and direct convolution steps. These
works, however, assume initial feedbacks to be zero and therefore
require the use of padding. Our goal is to provide exact initializations
in a form that integrates within these parallelization frameworks,
thereby eliminating the final shortcoming.
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Figure 5: Periodic extension (left) and even-periodic extension
(right) of an h X w input image. Blocks p, e, p” and e” with r rows
(and r columns) near input boundaries are also shown.

3 Background

Given the connection between our work and the parallel recursive
filtering framework introduced by Nehab et al. [2011], in the interest
of making our text as self-contained as possible, we include below
areview of notation, important formulas, and their two key block-
parallel algorithms. We begin by defining the initialization problem.

3.1 Problem statement

Our focus is on the cascades of recursive filters that are typical in
image-processing applications. These are defined by causal (for-
ward) and anticausal (reverse) recursive filters of order r, to be
applied in sequence to the columns and then to the rows of an image.

For column processing, a causal filter I : R™ x R" — R" takes
a prologue vector p € R™ and an input vector € R" of size h,
and produces an output vector y = F'(p, «), with the same size as
the input. The prologue is p,.x = y.x, with k € {1,...,r}. An
anticausal filter R : R" x R” — R" is analogous. It takes an input
vector & € R" and an epilogue vector e € R”, and produces an
output vector z = R(y, e). The epilogue is ex.1 = 2zp-1+%, With
k € {1,...,r}. The input/output relationships are given by (3).

The notation for F' and R can be “overloaded” to operate indepen-
dently on all columns of an A X w input matrix X and an r X w pro-
logue or epilogue matrix, so that F': R™*% x R"*% — R">*% apd
R:R"™ ™ x R™* — R"*"_ For row processing, let F'” and R”
denote the analogous filters that independently operate on all rows of
an h X w input matrix X and an h X r prologue or epilogue matrix:
FTZ therhxw%thw andRT: thwXthr%thw.

Given a matrix X, extended to infinity, it is helpful to define notation
for selecting blocks of r rows from the extension of X. To that end,
let po(X') denote the block of r rows preceding the extension of X
and let eo(X) denote the block or r rows following the extension
of X. Conversely, let p;-1 (X)) and p;+1(X) denote the blocks pre-
ceding and following p; (X ), respectively, for i € Z. Define e;(X)
analogously. Finally, let p] (X) and e](X) denote blocks of r
columns placed at analogous positions. Assume index ¢ = 0 when
omitted. These blocks can be seen in figure 5.

With these definitions, the cascaded recursive filter takes an input
matrix X and initial feedbacks p(Y'), e(Z), p"(U), and " (V) to
produce an output matrix V', where

Y = F(p(v). X),
U=F"(p"(U),Z), and

Z=R(Y,e(2)), &
V=R (UE (V).

See figure 6 for an illustration. Given a boundary condition and the
input X, our goal is to obtain explicit formulas for the unknown
feedbacks p(Y), e(Z), p”(U), and e’ (V') that are needed to gener-
ate the finite output V' using equations (4)—(5) as if all filter passes
were applied to the infinite extension of the input X.
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Figure 6: Cascade of recursive filters applied to an input matrix X.

In order to apply the filter passes F, R, F" and R”, we must
determine the initial feedbacks p(Y), e(Z), p”(U), and " (V).

3.2 Matrix notation and superposition

Grouping input and output elements into r-vectors allows us to use
matrices to express the effect of recursive filters in an order-agnostic
notation. Consider the causal filter /" and let

Yi-r Lij-r 0

Y, = |, = and &; = . 6)
Yi-2 Ti-2 0
Yi-1 Li-1 Li-1

It is easy to verify that if

Y, =p, then o
Yy, =%+ Arvy,,, where
0 1 e 0 0
Ar=|¢6 o .. 1 ol ®)
0 0 e 0 1
_dr _d'r—l o _d2 _dl
A better expression involves &; rather than &;. Iterating (7):
U =&+ Apg, =& + Apiia + ARg = 9)
r-1
= (Z A’f:a'éi.k) + A%y, (10)
k=0
:AleJrA}}yM (11)

Column k of matrix Ap, k € {0,1,...,r — 1}, is given by the
last column of A%*!. In other words, the columns of Ay are
shifts of the first 7 entries in the impulse response of F'. Analogous
matrices Ap and A can be obtained for an anticausal filter R.

In the matrix formulation, each iteration produces r new output
elements from the r previous output elements and r new input
elements. For example, given a 2nd-order filter:

Ap— [7?12 H , (12)

+ |1 0 2 | —d2 —di
AF—{—dl 1}7 and “‘F—Lild2 d%—dg]' a3

We can also use matrices to express a very useful superposition
property that allows us to decouple the influences of the feedback
and the input on the output. For b € Z~¢:

F(Prxb, Xoxv) = F(0,X) + F(P,0) (14)

= App P+App X, and (15)

R(Yoxs, Erxs) = R(Y,0) + R(0, E) (16)

— App E+AppY, 17)

with matrices Arp, Arp, Arg, and Arp defined by formulas

(AFP)bxr = F(Irxr,Obxr), (18)

(ArB)bxb = F(0rxb, Inxs), (19)

(ARE)bXT‘ R(Opsr, Irxr), and (20)

(ArB)bxs = R(Ipxb, 0rxp). 21

3.3 Block-parallel recursive filtering

The block-parallel algorithms assume zero initial feedback in all
filtering passes. In section 3.1, we defined matrices Y, Z, U and V'
in (4)—(5) as the results of filtering infinite extensions. Therefore,
to avoid confusion, we must introduce new notation for matrices
produced with zero feedback

Y = F(0,X),
U=F70,2), and

Z=R(Y,0), (22)
vV =R"(U,0). (23)

Hiding the large latency in accesses to global GPU memory requires
a level of parallelism that surpasses the number of independent rows
and columns in a typical image. Therefore, input and output must
be split into M x N blocks of size b x b for parallel processing.
Depending on the input size, the last row and column of blocks
may, of course, hold smaller blocks. Let B, (X) denote the
block starting at row mb and column nb of matrix X. Then, define
auxiliary matrices Y, Z, U, and V, block by block, so that:

Bimn(Y) = F(0, Bmn(X)),
Binn(Z) = R(Bmn(Y),0),
Binn(U) =F7(0, Bm.n(Z)), and
Bimn(V) = R7(Bnn(0),0).

The distinction between Y and Y is that, whereas ¥ is computed
independently per block, Y considers the sequential inter-block
dependencies of the image as a whole. Similar distinctions apply to
the other pairs Zand Z,Uand U, V and V.

Now define an operator " (for rail) that extracts the last r rows of
its argument. In the same manner, let operator H (for head) ex-
tract the first r rows of its argument. Let P, n (X) = T'(Bm,n (X))
and Ep n(X) = H(Bmn(X)) extract the row perimeters from
block B n(X). Likewise, let P, ,(X) and E], ,,(X) extract col-
umn perimeters from block By, »(X).

By repeatedly applying superposition properties (14)—(17), Nehab
et al. [2011] proved that

Pon(Y) = T(App) Pran(Y) + Prn(Y), (24)
Emn(Z) = H(ARg) Emi1n(2)
+ H(Agrp)App Pro1n(Y) (25)
+ Em,n(§)7
Pl (0) = Pl (0)T(Arp)" + Pl (), where (26)
Pgn((j) = ARE( m+1,n(Z ) (AFB) )

(ARBAFP)( Pran(Y ) T(Arg) ) (27)
+P] . (U), and

Epw(V) = EJ 1 (V) H(ARp)" i
+ Py (U) (H(Ars)Arp) (28)
+E£,n(f/'), where

EL (V)= ARE( t1n(2) (H (ARB)AFB) ) .
(ARBAFP)( Pran(Y )( (ARB)AFB) ) 29)
+ B (V).

These formulas enable us to filter the input in three basic stages. The
first stage collects perimeters for each block, independently and in
parallel. The intermediate stage, which is not as parallel, uses the
formulas to transform these perimeters into the initial feedbacks to
each block. The final stage loads the blocks and initial feedbacks to
produce, independently and in parallel, all blocks of the output.
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Here is their fully-overlapped algorithm 5:

5.1. In parallel for all m and n, load block By, (X) then compute
and store block perimeters Py, n(Y), Emn(Z), PL . (0),
and E], ,(V);

5.2. In parallel for all n, sequentially for each m, compute and
store the feedbacks Pp,-1,,(Y) and Ep,+1,,(Z) according to
equations (24) and (25);

5.3. In parallel for all m, sequentlally for each n, compute and
store feedbacks P, .1 (U) and E}, ,,+1(V) according to equa-
tions (26) and (28);

5.4. In parallel for all m and n, load input block By, n(X) and
all its block feedbacks Prn-1,n(Y), Emt1.n(Z), Pt (U),
and E], .1 (V 7). Compute and store By, n (V).

The higher level of parallelism and the bandwidth saved by overlap-
ping all filter passes in the first step lead to a 12x improvement in
performance relative to previous GPU recursive filtering strategies.

A simpler alternative to the fully-overlapped algorithm was also
proposed by Nehab et al. [2011]. It overlaps only causal-anticausal
processing and avoids row-column overlapping.

First note that the blocks from matrices U and V', defined by equa-
tions (27) and (29), are:

Bimn(U) = F7(0,Bmn(2)), and (30)
Binn(V) = R (B (U),0). (31)

In other words, the distinction between U and U is that U starts
from Z rather than Z; it starts after the column processing has
finished for the image as a whole, instead of independently by block.

Here is their causal-anticausal overlapped algorithm 4:

4.1. In parallel for all m and n, load block By, (X ) then compute
and store block perimeters P, »,(Y), Em.n(2);

4.2. In parallel for all n, sequentially for each m, compute and store
all feedbacks Pp.-1,»(Y) and then all Ey,41,,(Z) according
to equations (24) and (25);

4.3. In parallel for all mm and n, load block B, »(X) and column
block feedbacks Pr,-1,n (Y ) and Fp41,0(Z), compute and
store B, n(Z ), and then _compute and store block perime-
ters P, ,,(U) and E}],. n( ?) using equations (30) and (31);

4.4. In parallel for all m, sequentially for each n, compute and store
all feedbacks P, ,.1(U) and then all E7, ., (V) according
to equations (26) and (28);

4.5. In parallel for all m and n, load block By,,n(Z Z) and row
block feedbacks P, .1 (U ) and E], ,,+1(V). Compute and
store By n (V).

The step complexity and bandwidth requirements of algorithms 4,
and 5, increase with filter order , more so for algorithm 5 than
for algorithm 4. For low-order filters, algorithm 5 should have
the advantage. Indeed, Nehab et al. [2011] observed that, on a
GTX 480 GPU, their 5; implementation is much faster than 4.
Somewhat disappointingly, already for 2nd order the situation was
reversed. They attributed this to an “optimization issue that may be
resolved with future hardware, compiler, or implementation”.

High-order filters can be decomposed in a variety of different ways
into cascades of lower-order filters. Each lower-order filter can be
implemented using algorithm 4 or 5. For 3rd-order filtering on a
GTX 480 GPU, Nehab et al. [2011] had originally proposed a 5;+4,
cascade with kernel fusion. One of the motivations for the work
of Chaurasia et al. [2015] was the exploration of this universe of
different alternatives in search of the best performing combination.
In their implementation, 43 (which Chaurasia et al. call 3x_3y) was
the fastest alternative for 3rd-order filtering on a GTX Titan GPU.

This was the state of the art as we set out to adapt block-parallel
recursive filtering algorithms to filter infinite extensions. In sec-
tion 5.1, we describe an improvement over algorithm 5 that makes
full overlapping the fastest alternative for filter orders 1 through 3.

4 Explicit formulas for initial feedbacks

While deriving our formulas for the initial feedbacks, we face a key
additional challenge. To enable the design of efficient algorithms,
the formulas can depend only on values available between the first
and final steps of the block-parallel recursive filtering algorithms.

We follow the same general approach for all extension types. The
idea is to iterate the recurrence relations between input and output.
Obtaining the output Y; from input region X; requires the last part
of the output Y;_1 corresponding to region X; 1 preceding X; in the
extension. This iteration process naturally leads to infinite series
involving matrix powers. In each case, we prove that these series
converge, then find their limits by solving small linear systems.

The convergence and non-singularity proofs, though important, are
not needed in understanding the derivations that follow. We have
moved them to appendix A in order to avoid breaking the flow of the
text. Even though the derivations themselves are a bit involved, the
resulting algorithmic steps, summarized at the end of each section,
are quite simple to understand and easy to implement.

All derivations focus on column processing by causal-anticausal
cascades. Row-column cascades are considered when we describe
the complete block-parallel algorithms in section 5.

4.1 Constant padding extension

When clamping to edge, define C; to contain r copies of the first row
in X, and C| to contain r copies of the last row in X. Otherwise,
when padding with an arbitrary constant, define them to contain
r copies of any desired row-vector in R”. The boundary condition
dictates p_;(X) = Ct and e;(X) = C\, fori € {0,1,2,...}.
Start by expressing prologue p(Y), i.e., the initial feedback for the
causal pass of recursive filtering, as a function of p.1 (Y"), the output
directly preceding it:

p(Y) = F(pa(Y),Ch) (32)
Expanding p.1(Y), then p_2(Y") and so on k times, we reach:
k-1
p(Y) = (AR)" pu(Y) + (Z(x‘ﬂv)') ApCr. (34
i=0

Taking the limit as K — oo, theorems A.1 and A.2 guarantee that
the first term in (34) vanishes and the Neumann series in the second
term converges to Sp = (I — A% ). Therefore,

Equation (35) depends only on the constant padding C4. All required
matrices are readily obtained from filter F'. The initialization of the
causal pass is therefore complete.

To initialize the anticausal pass, we need to find the value of the
epilogue e(Z). Developing the equation along the lines of (32)—(34),
we obtain

e(Z) = R(e(Y)7 el(Z)) (36)
=ARel(Z)+ Are(Y). (37)

After k expansions, we reach

e(Z) = (AR ex(Z

k-1
(Z AR) Ag e )). (38)

=0
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Equation (38) depends on each of the values e;(Y") that result from
the first pass. We can obtain them as functions of e_1(Y") and the
padding C' in a form analogous to (34):

e:(Y) = (A7) e (V) + <Z(A?)j> ArCy (39)

7=0

= (AR) e (V) + (I - (AR)")SrAp Cy.  (40)
Plugging (40) into (38) and rearranging,
e(Z) = (AR)" er(2)

Taking (41) to the limit as k — oo, theorems A.1 and A.2 guarantee
the first term vanishes and the Neumann series in the second term
converges to Sg = (I — A7)

Theorem A.3 then shows that the limit Sk of the series
k
Srr = lim ;(A%)’AR (Ap)’ (42)
in the last term of (41) satisfies
Srr — ARSrr Ay = Apg. (43)

This is a non-singular (r X r) x (r x r) linear system where the
only unknowns are the entries of matrix Srr. Matrix Sgr plays a
similar role to matrix M described by Triggs and Sdika [2006].

We can now write the formula for epilogue e(Z), i.e., the initial
feedback for the anticausal pass of recursive filtering:

e(Z) = SprArea(Y) + (SrAr — SprAR)SrAp Cy. (44)

It depends only on e.1(Y), the last r rows of output during the
causal pass, and on the constant padding C;. Since e.1(Y") can be
obtained with a simple modification of the intermediate stages of
the block-parallel algorithm, the initialization of the anticausal pass
is complete.

Summary of the constant padding extension

Precomputed r X r matrices

Sp=(I—-Ap)", Sr=(I-AR)",

SRF_, where SRF — A%SREA}- = AR, B
SrAr, Srr AL, and (SRAr — SrrA})SFAF

Inputs

C; with r copies of top row of constant padding
C with r copies of bottom row of constant padding
e1(Y) = H(F(p(Y), X)) assumed given

Causal and anticausal feedback computation

1. Compute p(Y') from C} using (35)
2. Compute e(Z) from e_; (Y') and C using (44)

4.2 Periodic extension

The periodic extension simply tiles the space with copies of the input
image, as shown in figure 5. Given an input matrix X = X, let
Xi-1 and X1 denote the matrices preceding and following X; in
the extension, respectively, for ¢ € Z.

To find the initial feedback p(Y") to the causal pass, observe that

p(Y) =T (F(p(Ya), X1)) (45)
=T (F(p(Y1),0)) + T(F(0,X)), since X =X_; (46)
= Abp(Ya) 4 e (Y). (47)

To see why T'(F(p(Y.1),0)) = A% p(Ya), set & = 0 in equa-
tion (7) and iterate h times.
Back to equation (47), we now iterate k times to obtain

k-1
p(Y) = (AR)'p(Ya) + D (AR ea (V). (49)
i=0
Taking the limit as kK — oo, theorems A.1 and A.2 guarantee that
the first term in (48) vanishes and the Neumann series in the second
term converges to (I — A%)™, and so

p(Y)=(I - Ap) " ea(Y). 49)

Equation (49) depends only on e_; (Y), which can be obtained from
the intermediate stages of the block-parallel algorithm. This means
that the initialization of the causal pass is complete.

The output for the causal pass on periodic input must also be periodic

because p(Yi) = p(Yi-1), for k € Z. In order to establish an
analogy with the causal case, we need additional definitions

Z=R(Y,0), U=F"(Z,0), and V=R7(U0). (50)

The distinction between these definitions and those for Z, U, and V'
is that the new definitions assume the correct initial feedbacks were
used (instead of zero) except for the last filter pass. By analogy

e(Z) = (I - AR) " 'pi(2). (51)

Since p1 (Z ) can be computed from information available after the
intermediate stages of the block-parallel algorithm, the initialization
of the anticausal pass is complete.

Summary of the periodic extension

Precomputed r X r matrices
(I — A%)tand (I - AR)™?
Inputs

eq(Y) = T(F(0, X)) assumed given
pi(2) = H (R(Y,0)) assumed given

Causal and anticausal feedback computation

1. Compute p(Y") from e,l(}o/) using (49)
2. Compute e(Z) from p1(Z) using (51)

4.3 Even-periodic extension

Combined causal/anticausal recursive filters are, more often than
not, linear phase. A filter has linear phase if and only if its impulse
response is symmetric. In the frequency domain, this corresponds to
a real frequency response. For recursive filters, this means F' and R
use the same feedback coefficients [d1 --- d,]. This restriction
allows us to compute the initial feedbacks for filtering even-periodic
infinite extensions as follows.

First, a conceptual strategy. Construct the even-periodic extension,
depicted in figure 5, by first concatenating the input with its mirror
reflection. This process yields an image twice as large, to which we
can then apply the simpler periodic extension. We can then use the
results we obtained in the previous section.
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Let K (X) denote the reversion of entries in each column of X and
let X1 # X2 denote column-by-column concatenation. Applying
equation (49) to the periodic extension of X 4 K (X),

p(Y)=(I— AP ' T(F(0,X + K(X))). (52)
Moreover, note that

T(F(0,X 4 K(X))) = T(F(ea(Y), K(X))) (53)

=Apea(Y)+T(F(0,K(X))) (54)

= Ak eq(Y)+ KH(R(X,0)), (55)

where K denotes the r X r exchange matrix (i.e., the identity matrix

with rows reversed).

One of the values we need, e_l(f/), is readily available after the
intermediate passes of the block-parallel algorithm. The other value,
H (R(X , O)), poses a problem because the anticausal filter R is
never applied directly over the input X. Instead, it is applied over
the result Y of the causal pass. In other words, we have access
to F(0, X) and R(F(0, X),0), but not to R(X,0).

To solve this problem, we use theorem A.4. This key theorem relates
the feedbacks needed to equate the two application orders for the
cascade, namely F' o R and R o F'. The theorem states that

Z=R(F(0,X),0) = F(P,R(X,E)) (56)
with
P'=R(0,H(2)) and 0=F(T(2),E"). (57)
The new application order gives
p(2) = H(R(F(0,X),0)) (58)
7H(F(P R(X, E))) (59)
= ARP' + ArH(R(X,E")) (60)

= ApP' + Ap(H(R(X,0)) + ARE).  (61)
Therefore, given values for P’ and E’ we can obtain the needed
H(R(X,0)) = (Ar) " (p1(2) — ARP') — ARE'.  (62)
Note that theorem A.5 guarantees that A is non-singular.
The value of P’ comes directly from (57):
P'=R(0,H(2)) = Az p1(2). (63)
To obtain E’, first note that
T(2) =T (R(Y,0)) = R(T(Y),0)
Then, substitute into (57):
0=F(T(2),E)

The result is that

= Are (V).  (64)
= ApE + ApAgeq(Y). (65)

E = —(Ap) AL Age (V). (66)

Substituting (63) and (66) into (62), (62) into (55), and (55) into (52),
we obtain the initial feedback for the causal pass:
p(Y) = (I - AF)" (K(Ar)"' (I - AR AR) p1(2) +
(A} + KAR(Ar)" AL Ar) e1(Y)). (67
‘We must now find the initial feedback for the anticausal filter pass.
To do so, we first observe that, when the impulse response is sym-

metric, the result of applying a filter to an even-periodic input is
itself even-periodic. From the even-periodicity of the output Z,

er(Z) = Ke(Z). (68)

On the other hand,
e1(Z) = R(ea(Y),e(2))
Substituting and regrouping, we obtain
e(Z) = Le.(Y) with L= (K- Ap)"Ax. (70)

Since K — A, = K(I — KA%), theorem A.6 shows that ma-
trix K — A, is non-singular and therefore matrix L always exists.

=Ape (V) + Ape(Z). (69

Finally, we eliminate e_1 (Y") from (70) by recalling that

e1(Y) = Ak p(Y) + e (V) (71)
to obtain the final formula
e(Z) = L(AF p(Y) + ea(Y)). (72)

Summary of the even-periodic extension

Precomputed r X r matrices
(Ar)™", (I - AP K(Ap) ' (I - AL AR), Al

Al + KA (Ap) AL AR, and L = (K — A}) AR
Inputs
e1(Y) = T(F(0, X)) assumed given

p1(Z) = H(R(Y,0)) assumed given
Causal and anticausal feedback computation

1. Compute p(Y) from e_;(Y) and p1(Z A using (67)
2. Compute e(Z) from p(Y') and e_1 (V") using (72)

5 Modified block-parallel algorithms

Instead of directly adapting the code provided by Nehab et al. [2011]
to use our exact initial feedback formulas, we first made several key
improvements. Our modifications increased performance by more
than 50% and made the code more general.

5.1 Our improved baseline algorithm

We first made the code agnostic to filter order. This was just a
matter of carefully implementing all formulas using C++ templates.
We tested our code unmodified up to order 20. It is true that most
useful filters are lower order, and that for high orders the best per-
formance may come from cascading low-order filters, as Chaurasia
et al. [2015] advocate. However, it is not always possible to filter
infinite extensions using arbitrary cascades. The periodic extension
can be decomposed arbitrarily because the output of each filter pass
preserves the same periodicity. The even-periodic extension offers
less freedom because, in order to preserve periodicity, a symmetric
high-order causal-anticausal filter pair must be decomposed into a
sequence of symmetric causal-anticausal filter pairs. It is unclear
how to decompose the constant padding extension, since the output
of any filter pass will not, in general, be constant out of bounds.

Then, we performed a few low-level optimizations. For example, we
keep all precomputed b X r matrices in global memory, rather than
in constant memory, to prevent serialized access. Other changes were
motivated by architectural differences between the GTX 480 GPU
that Nehab et al. [2011] targeted and the GTX Titan GPU we (and
Chaurasia et al. [2015]) target. The simplest modification was using
the new _1dg intrinsic to take advantage of the read-only data cache.
The GTX Titan has twice as many registers and 6 times more cores
per SMX than the GTX 480. To take advantage of these changes,
we modified the intra-block steps to perform computations entirely
in registers, rather than in shared memory. We also modified the
inter-block steps to use multiple computing warps per block.
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The most profound change addresses one of the reasons why algo-
rithm 5 performs poorly in higher orders: the lack of parallelism in
step 5.3 and the computational cost increase of (27) and (29) with
order. We therefore split step 5.3 in two in our new algorithm 6:

6.1. In parallel for all m and n, load block By, »(X) then compute
and store block perimeters Py, n(Y), Emn(Z), PL . (0),
and E], ,(V);

6.2. In parallel for all n, sequentially for each m, compute and
store all feedbacks Pr, 1., (Y) and Ey,11,,(Z) according to
equations (24) and (25);

6.3. In parallel for all m and n, compute and store all P, n(0)
and E}),. 7L( ) according to equations (27) and (29);

6.4. Inparallel for all m, sequentially for each n, compute and store
feedbacks P, ,,.1(U) and then all E, ,, 1, (V) according to
equations (26) and (28);

6.5. In parallel for all m and n, load input block By, n(X) and
all its block feedbacks Py,-1 (), Epi1,n(2), Pl (U),
and B, .1 (V). Compute and store By, (V).

The bulk of the computation of steps 6.2—6.4 is performed in step 6.3.
This step runs in parallel for all blocks, rather than in parallel for
columns but sequentially for rows. This added parallelism more than
makes up for the increased bandwidth requirements.

Using the formulas for the initial feedbacks, we can now adapt
algorithm 6 to perform computations on infinite extensions. For
each extension type, we must obtain the inputs to the formulas,
compute the initial feedbacks that surround the image as a whole,
and then use them to correct the internal feedbacks for each block.

As a side note, equations (24)—(29) assume zero initial feedback and
operate on Y, Z, U, and V. However, the formulas are still valid
even if the initial feedbacks were not assumed to be zero. We will
therefore replace, on occasion, Z by Z or Z etc.

5.2 Constant padding extension

Here, the initial feedback to the causal pass does not depend on
the input image as a whole: It can be computed with (35) before
the block perimeters are corrected. This, in turn, enables the block-
parallel algorithm to compute causal block feedbacks for the constant
padding infinite extension at no additional cost. As a natural side
effect, we obtain e.1 (Y"), and with it we can compute the anticausal
feedback using (44). This then allows the block-parallel algorithm
to compute anticausal block feedbacks at no additional cost.

Before we can proceed to row processing, we must obtain the results
of column processing the constant padding of each row. We do this
block by block, using formulas

E} o (Z) = Arg H (Em+1,0(2))
+ (Arp App) H (Pran(Y)) (73)
+ E;ln(Z), and

P;r[;,n(Z) = ARE TT(Em—Q—l,n(Z))
+ (Arp App) T (P n(Y)) (74)
+ P (Z).

These formulas come from the first and last 7 columns in the equation

R(F(Prxln Xoxn), Erxb) =
Agp App P+ R(F(0,X),0) + App E.  (75)

Using these processed columns, we can define the constant paddings
for rows, C' and C_,. Transposed versions of equations (35)
and (44) can then be used to obtain the required initial feedbacks for
row processing in a similar way to the feedbacks we obtained for
column processing.

The result is algorithm 6¢:
6°1. In parallel for all m and n, load block B.» »(X) then compute

00

and store block perimeters P, (YY), Emn(Z), PL.(0),
and E7, ,(V);

6°2. In parallel Jfor all m, compute and store block perime-

00

ters F;, ( )andeN 1(2);

6°3. In parallel for all n, compute and store P.1,,(Y") from C4
as per (35), then sequentially for all m compute and
store Ppy, n(Y) from Pp,1 (Y and P, . (Y) as per (24);

6°4. In parallel for all n, compute and store FEr,n(Z) from C|
and P.1,(Y) as per (44), then sequentially for all m,
compute and store Fr, n(Z) from Ermni1,5n(Z), Pman(Y),
and E,, »(Z) as per (25);

6°5. In parallel for all 7 and n, compute and store all Py, 2(0)
and B, n( ) according to equations (27) and (29);

6%6. In parallel for all m, obtain each block of C', the constant
padding for each row of Z, from EJ, ;(Z), H7(Pm-1,0(Y)),
and H” (P}, 41,0(Z)) as per equatlon (73) Similarly, compute
each block of C_, from P, (Z) TT(Pm 1,N— 1(Y)),
and T7 (E] 1 v 1(2)) as per equatlon (74);

6°7. In parallel for all m, compute and store P}, ;(U) from C—
as per (35), then sequentially for all n, compute and
store P, ,,(U) from P}, ,, 1 (U), and P, ,,(U) as per (26);

6°8. In parallel for all m, compute and store E;, (V) from C_,
and P}, _,(U) as per (44), then sequentially for all n, com-
pute and store E, (V) from E7 . 1(V), Pj,.1(U),
and E], (V) as per (28);

6°9. In parallel for all m and n, load input block By, »(X) and
all its block feedbacks Pry-1,,(Y), Em+1,n(Z), PTZ w1 (),
and E}, ,,+1(V). Compute and store By, (V).

Although these modifications seem complex, they translate to very
little additional computation and memory bandwidth. As section 6
shows, the result is that the block-parallel algorithm for filtering the
infinite extension of an image with constant padding is about as fast
as using zero feedback for all passes.

5.3 Periodic extension

In contrast to the constant padding extension, the formula that yields
the initial feedback p(Y") for the causal pass of the infinite periodic
extension requires the value of e.1(Y'). This is only available from
the block-parallel algorithm after all block perimeters Py, . (Y") have
been corrected to block feedbacks Py, (V). Once p(Y') is known,
we have to correct them again to obtain P, »(Y).

Although the second update can be performed in parallel using
Pon(Y) = Pon(Y) + AF" p(Y), (76)

our attempts at precomputation of the required matrix powers or
their generation on demand always fell short of the performance
obtained with sequential updates via equation (24).

For row processing, we simply use transposed equations. The result
is algorithm 67:

6”1. In parallel for all m and n, load block By, .. (X) then compute
and store Py, (Y), Em.n(Z), P, . (U), and E7, ,,(V);

62. In parallel for all n, sequentially for each m, compute
all P, (Y) using Pp-1,,(Y) and P, (Y) as per (24) un-
til reaching Pas.1,»(Y). Then, compute and store P.1,,(Y)
using (49), and, sequentially again for each m, compute and
store all Py, (Y) using Pr1,,(Y) and Py, (V) as per (24);

6°3. In parallel for all n, sequentially for each m, compute
all B n(2) using Epmyi1,0(2), P 1Y) and Epnn(Z )
as per (25) until reaching Ey,,(Z). Then, compute and
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store Enrn(Z) using (51), and, sequentially again for
each m, compute and store all £, n(Z) using Emi1,.0(2),
Pr1n(Y) and Ey, o (Z) as per (25);

6°4. In parallel for all m and n, compute and store all P, (0
and £, n(V) according to equations (27) and (29);

6P5. In parallel for all m, sequentially for each n, compute Pl (U )
using P} .. (U ) and P, ,,(U ) according to (26) until reach-
ing P, n.1(U). Then, compute and store P, ;(U) using
the transpose of equation (49), and, sequentially again for
each n, compute and store all P] . (U) using P, ,,..(U),
and P, ,,(U) as per (26);

626. In parallel for all m, sequentially for each n, compute
all B, (V) using E, .1 (V), Pg na(U), and E], ,,(V )
as per (28) until reaching E] o(V). Then, compute and
store Em ~ (V) using the transpose of equation (51), and,
sequentlally again for each n, compute and store all EL (V)
using E7, i1 (V). P (U) and EJ, ,,(V) as per (28);

6%7. In parallel for all m and n, load input block B, »(X) and
all its block feedbacks Pr-1,n(Y), Em+1,0(2), P n1(U),
and E7, ,,+1(V). Compute and store By, (V).

The modifications required by the periodic extension essentially dou-
ble the cost of the intermediate steps of the algorithm. Fortunately,
the total running time is dominated by the first and last steps. See
section 6 for the modest resulting performance penalty.

5.4 Even-periodic extension

Both causal and anticausal initial feedbacks p(Y") and e(Z) for the
even-periodic infinite extension depend on e-1 (Y) and p1 (Z). These
values are available from the block-parallel algorithm only after
all block perimeters Py, (Y) and E,, (%) have been corrected
to block feedbacks P, (Y) and E,, .(Z). As in the periodic
extension case, after computing p(Y') and e(Z), we sequentially
correct the block feedbacks once again.

For row processing, we simply use transposed equations. The result
is algorithm 6°:

6°1. In parallel for all m and n, load block B, n(X) then compute
and store Py (Y), Emn(Z), PL . (U), and B, ,,(V);

6°2. In parallel for all n, sequentially for each m, compute and
store P, ,(Y) using Pm_l’n(lo/) and P, (Y) as per (24)
until reaching Par1,,(Y). Then, compute E,, n(Z) us-
ing Em+1,n(Z)g P10 (Y) and Em n(Z) as per (25) until
reaching Fy ,,(Z). From Pas1,,(Y) and o ,,(Z), compute
and store P.1 ,(Y) as per (67) and En,»(Z) as per (72);

6°3. In parallel for all n, sequentially for each m, compute and
store all P, (V) using Ppy-1,,(Y) and P, (Y ) as per (24),
then compute and store all Fi, »(Z) using Emi1,n(2),
P (Y) and Ep, 0 (Z) as per (25);

6°4. In parallel for all m and n, compute and store all P, ,,(U)
and E7, ,,(V) according to equations (27) and (29);

6°5. In parallel for all m, sequentially for each n, compute and
store P . (U) using Py na(U) and P . (U) as per (26)
until reachlng N_l(lof ). Then, compute ET. n(V) us-
ing B, nH(V), P,Z; n1(U ) and E,, (V) as per (28) until
reaching E, o(V). From P}y, (U) and E. o(V), compute
and store PZJ (U) as per (67) and EJ. n(V) as per (72);

6%6. In parallel for all m, sequentially each n, compute and store
all P, ,,(U) using P, .. 1(U), and P . (U) as per (26)
then compute and store all E;, (V) using By, ,41(V),
P ..1(U)and E,Z;n( 7} as per (28);

6°7. In parallel for all m and n, load input block By, ,(X) and
all its block feedbacks Prm-1,n(Y), Bm+1,n(2), Pl na(U),
and E}, ,,+1(V). Compute and store By, (V).
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Figure 7: Time spent on each step of algorithms 4, 5, and 6 for
orders 1-5. Each color represents a different kernel. Columns
marked with a ‘-’ do not include our low-level optimizations. Note
the explosion in cost of step 5.3, in comparison to steps 6.3 and 6.4.
These baseline implementations ignore boundary conditions.

Although the computation of image feedbacks is delayed relative to
the periodic extension, the computational cost of the even periodic
is similar. This is confirmed by the benchmarks in section 6.

6 Results and discussion

We implemented all algorithms in C for CUDA (version 7.0). Bench-
marks were run on an NVIDIA GTX Titan with 6GB of DRAM
(2688 CUDA cores, 14 SMXs, 192 cores/SMX). Our tests con-
sidered single-channel 32-bit floating-point images with random
values. Time measurements were repeated 1000 times to reduce
variation. Image sizes ranged from 647 to 8192 pixels, in 64-pixel
increments. In figures 8-11, performance numbers are reported in
pixel throughput (1 GiP/s = 23° processed pixels per second).

Baseline for comparison We start analyzing the performance of
baseline implementations that ignore boundary conditions. Figure 7
shows the time spent on each step of algorithms 4, 5, and 6 when run
on a 40962 image. Each bar represents a different implementation.
Bars marked with a ‘-’ do not use our new low-level optimizations.
Each color represents a different kernel, as these are shared across
implementations. For example, all implementations use exactly the
same second step. The comparison between algorithms 5 and 6 show
the benefit of splitting step 5.3 into steps 6.3 and 6.4 for orders 3
and above. The figure suggests that algorithm 4 has the advantage
starting at order 4. This is confirmed by figure 8, which shows the
throughput of each algorithm for input images of increasing size. As
expected, running times increase with order 7. The effect is strongest
in algorithm 5 and weakest in algorithm 4. Even so, algorithm 4
only becomes significantly faster than algorithm 6 for orders 5 and
above. Recall that, in previous implementations, full overlapping
was slower than causal-anticausal overlapping already for order 2.

Realistic alternatives for filtering extensions The first compet-
ing alternative to our exact formulas is to use an input padding longer
than the effective support of the impulse response of the recursive
filter of interest. Our implementation of this approach is denoted
algorithm 6°. Another option is to formulate a banded linear system,
precompute an LU -style factorization, and implement forward- and
back-substitution using recursive filters with variable feedback co-
efficients. This works well for the even-periodic extension, though
additional control flow and global memory accesses are needed to
manage the variable coefficients. A sequential version of this idea
was described in detail by Nehab and Hoppe [2014, section 4.2].
Our 1st-order parallel implementation is denoted algorithm 5".
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Baseline implementations (zero feedback)
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Figure 8: The arithmetic and step complexity, as well as the band-
width requirements of algorithms 4—6 vary in a distinct manner
with filter order. The plot shows the performance of our baseline
implementation in orders 1 to 5 and ignores boundary conditions.

Effect of impulse response support on performance Our ex-
act algorithms are oblivious to the rate of decay of the recursive
filters they implement. (As long as the filters are BIBO stable.) In
contrast, when the support of the impulse response grows, compet-
ing methods will either require larger padding or the use of varying
coefficients throughout larger parts of the input. This means the
advantage of using our algorithms increases with the support of
the impulse response. To illustrate this, figure 9 shows the perfor-
mance of filtering a 2048> image with filters whose impulse response
require an increasing number of blocks to decay to zero within a
reasonable tolerance. In contrast to using our explicit formulas, the
use of padding or varying coefficients leads to performance loss.

Numerical behavior To test the numerical behavior of our algo-
rithms, we investigated the space of 2nd-order stable recursive filters
with real coefficients (i.e., with poles at peile with 0 < p < 1).
Given a desired error tolerance € and the number of pixels n after
which we want the input response to decay to €, it can be shown that
the relationship between p and 6 is given by

p"/? = esin.

W
Withe = 1071 and n € {32, 64, ...,4096}, we selected 300 strat-
ified random values for 6 € [0, 7] and computed the corresponding p
from (77). Using a 512% input image, ground truth for the initial
feedbacks for all infinite extensions was obtained in double precision
using padding long enough for convergence to full floating-point
precision. We found that our exact algorithms were consistently
within 10™° of ground truth, regardless of extension.

Worst case scenario Figure 10 shows the performance of our
algorithms solving the real-world problem of bicubic B-spline inter-
polation [Unser et al. 1991]. In 8-bit and 16-bit precision, this fast
decaying 1st-order recursive filter requires a single block of padding
around the input. It is therefore the worst case scenario for our
new methods. (Full 32-bit and 64-bit floating-point precision would
require 5 and 18 blocks of padding, respectively.) Since the incurred
penalty for input padding is negligible, this strategy is about as fast
as exact the infinite extension algorithm for constant padding (al-
gorithm 6°). The periodic (algorithm 6°) and even-periodic (algo-
rithm 6°) algorithms come next. The exact algorithm using varying
filter coefficients (algorithm 5") is the least performant way to deal
with boundary conditions. To put these results into context, figure 10
includes lines for the fastest implementations of Nehab et al. [2011]
and Chaurasia et al. [2015]. Even though these competing imple-
mentations were timed while ignoring boundary conditions, all our
exact infinite extension implementations are significantly faster.
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Figure 9: Effect of recursive filter decay speed (in number of blocks)
to the performance of 1st-order algorithm 6 using different extension
strategies. Our exact algorithms are oblivious to the decay speed.
Alternative methods suffer a performance penalty.

Target usage scenario Figure 11 shows another real-world ap-
plication: applying Gaussian blur with a standard deviation that
depends on the image resolution. In this test, o = ¢ pixels for in-
put resolution n?. We assume the impulse response decays to zero
within approximately 3o pixels. The recursive filter implementation
uses the 3rd-order approximation by van Vliet et al. [1998]. We
include in the comparison an exact implementation in the frequency
domain using FFT [cuFFT library 2007] as well as direct convolution
in the spatial domain [Podlozhnyuk 2007].

Performing the convolution in the spatial domain is clearly slower
than in the frequency domain. As the image size and standard de-
viation increases, our exact algorithms 65, become considerably
faster than the alternatives. Once again, for added context, note that
all our exact implementations are faster than the best implementa-
tions of Nehab et al. [2011] and Chaurasia et al. [2015], even when
ignoring boundary conditions.'

7 Conclusions

Recursive filters enable high-performance filtering with impulse
responses that have a wide support. These filters have many appli-
cations in computer graphics. They include, for example, a wide
variety of low-pass filters (e.g., Butterworth, Chebyshev, and elliptic)
that can be easily transformed into other types of frequency-selective
filters.

When the impulse response is wide, filtering finite input requires the
specification of boundary conditions. The most appropriate bound-
ary conditions depend on the application. Popular alternatives are
the constant padding, periodic, and even-periodic infinite extensions.

The traditional approach to implementing boundary conditions for
recursive filtering is to augment the input with enough padded data
to cover the effective support of the impulse response. This approach
becomes computationally prohibitive when the support width is large
relative to input size.

We propose instead to compute the initial feedbacks needed for
recursive filtering the most popular infinite input extensions, without
using any padding. We derive exact formulas for filters of arbitrary
order and prove that they are well defined for stable recursive filters.
We also show, empirically, that they produce precise results.

'Due to some oversight, the code distributed by Nehab et al. [2011] for
3rd-order filtering does not fuse the 5; and 4, kernels. To their advantage,
we fixed this before running our tests. The change made their code perform
better than the 3x_3y implementation by Chaurasia et al. [2015].
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2D bicubic B-spline interpolation
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Figure 10: Throughput of our 1st-order parallel recursive filtering
algorithms using different extension strategies. The filters solve
the bicubic B-spline interpolation problem. 6°™° use our exact
formulas. 6" uses padding. 5" uses variable coefficients. Competing
implementations 5 by Nehab et al. [2011] and 1xy by Chaurasia
et al. [2015] were timed while ignoring boundary conditions.

The formulas depend on information that is only available after
going over the entire input data. Fortunately, state-of-the-art block-
parallel recursive filtering algorithms already go over the input data
twice. By designing our formulas to depend only on information
available between these passes, we were able to create new block-
parallel algorithms for filtering infinite input extensions with little
or no performance penalty.

In summary, our work enables users to obtain the precise results of
recursively filtering infinite input extensions in state-of-the-art per-
formance and precision, without ever worrying about the decay rate
of the associated impulse response. There is no trade-off involved.

7.1 Future work

A possibility for future work is porting the framework of Chaura-
sia et al. [2015] to support efficient high-order filtering of infinite
input extensions. Theorem A.7 describes how to split a high-order
feedback into the feedbacks of lower-order filters and how to merge
lower-order feedbacks into the feedback of a higher-order filter.
Theorem A.4 describes how to convert the feedbacks for a causal-
anticausal chain into the feedbacks for an anticausal-causal chain.
Together, these theorems can be used to convert between the feed-
backs needed by arbitrary filter decompositions. Still, the details
of how to use these theorems to automatically generate efficient
implementations for arbitrary decompositions are far from obvious.

We are also interested in investigating the parallelization of recursive
filters for which the feedback coefficients can vary on a per pixel
basis. Algorithm 5" is a first step in this direction: weights can
change along a row for row processing, but all rows must use the
same weights. The same is true for column processing. Full support
for independent weights would allow us to implement geodesic and
edge-aware filters [Gastal and Oliveira 2011; Sun et al. 2014; Gastal
and Oliveira 2015; Zhou et al. 2015] that have recently become the
basis of a variety of computer graphics applications.

A more immediate direction for future work is porting the framework
of [Maximo 2015] to support infinite input extensions.
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Figure 11: Throughput of Gaussian blur using our 3rd-order paral-
lel recursive filtering algorithms with different extension strategies.
6°P° use our exact formulas. 6° uses padding. cuFFT filters in the
[frequency domain. conv is a direct convolution. Competing imple-
mentations 51+4, by Nehab et al. [2011] and 3x_3y by Chaurasia
et al. [2015] were timed while ignoring boundary conditions.'
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A Proofs of auxiliary theorems

Theorem A.1. F is a stable recursive filter in the BIBO sense if
and only if the spectral radius p(Ar) < 1.

Proof. The key observation is that A r is the (transposed) compan-
ion matrix to the denominator of the transfer function of F'. In other
words, A € o(Ar) is an eigenvalue of Ap if and only if A is a
pole of F. BIBO stability requires || < 1 for all poles of F' (see
[Oppenheim and Schafer 2010]). The theorem follows. O

Theorem A.2. Given a matrix A, the following statements are
equivalent:

. k__ i _ -1
p(A)<1<:»k13§oA_o<:>ZA_(I Ayt (78)

=0

Proof. See a textbook in matrix analysis [Meyer 2000, chapter 7.10].
O

Theorem A.3. If A and C are two matrices with p(A) < 1
and p(C) < 1, then the series

S:I+ABC+A2BCQ+~~~:ZAkBCk
k=0

(79

converges for all conformable matrices B. Furthermore, the limit S
satisfies the non-singular linear system

S - ASC =B. (80)
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Proof. From the partial sum

k
Sp=>»_ A'BC", 81)
i=0
form the telescoping sum
S, — AS,C =B - A" BC*. (82)
Since
|A'BC'||r < ||A|lF|B|rlIC"|IF (83)

by the submultiplicative property of the Frobenius norm, we can use

p(A) < 1and p(C) < 1 and theorem A.2 to obtain the limit
S — ASC = B. (84)

This is simply a linear system on the entries of S. To see that it
is non-singular, decompose A and C' into their respective Jordan
normal forms PaJa P4’ and PocJc PG'. After rearrangement,

S —JaS'Jc =B, (85)
S’ = P4s'SPc and B = P4i'B'Pc. (86)

with

Given the solution of this new linear system on the entries s;; of S’,
we can obtain the desired S = Pa S’ Pst.

Recall that J 4 and J¢ are upper bidiagonal, with eigenvalues of A
and C' in the main diagonal, respectively, and O or 1 in the upper
diagonal. Arranging the equations on s;; by decreasing ¢ then in-
creasing j, we see the system is triangular. The pivots are 1 — A\;y;,
with A; € o(A) and ; € o(C). These can never be zero, be-
cause p(A) < 1 and p(C') < 1. The theorem follows. O

Lemma A.1. Recursive filters F' and R commute.
Proof. Let F! and R™! denote the discrete convolution inverses

of F and R. Let I denote the identity operation. Since discrete
convolution commutes,

FloR'=R'oF! = (87)
RoF'oR'=F" = (88)
FoRoF'oR'=1 = (89)
FoRoF'=IoR = (90)
FoR=RoF. 1)

On finite input, appropriate prologues and epilogues must be care-
fully chosen, as shown in theorem A.4. O

Theorem A.4. Let F' and R be causal and anticausal recursive
filters, respectively. Select a boundary condition for the infinite
extension of input x. Let p and e be the initial feedbacks for filtering
the infinite extension of « in the R o F order, and €' and p’ the
initial feedbacks for filtering in the F' o R order. By lemma A.1,

z= R(F(p, x), e) = F(p', R(x, e/)). (92)
Furthermore, the initial feedbacks are related by equations

p =R(p,H(z)) and e=F(T(z)€). (93)

Proof. Lety = F(p,x). Note that p’ = [z.1., -+ 2.1], that
P = [y-1-r -+ Y1), and that H(2z) = [z0 -+ zp-1]. Therefore,

p =z - 21] (94)

= R([yar - yalilz0 - 2] (95)

= R(p, H(z)), (96)

The derivation of e = F (T'(z), €') is analogous. O
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Theorem A.5. The matrices Ar and A associated to causal or
anticausal recursive filters F' and R are always non-singular.

Proof. The columns of A are shifts of the first r entries in the
impulse response of F. This makes the matrix lower triangular
with 1 in the diagonal. It is therefore non-singular. Let F’ be a
causal filter using the same feedback coefficients as the anticausal R.
It follows that Ar = KAy K. Since K and A p/ are non-singular,
sois Ag. O

Theorem A.6. I — KA is non-singular if A has p(A) < 1.

Proof. We show that limy, . (KA)* = 0, so theorem A.2 on KA
proves the required result. Indeed,

lim A" =0 = (97)
k— o0

lim |A*|r=0 = (98)

k— o0

. k o

Jim (KA, =0 = (99)
lim (KA)"= 0. (100)

k— o0

Theorem A.2 and p(A) < 1 lead to (97). Orthogonality of K
and the submultiplicative property of the Frobenius norm im-
ply [[(KA)*||r < || A*||F, from which (99) follows. O

Theorem A.7. Let Fo, and Ra be a causal and anticausal recur-
sive filters, with poles o« = (a1, ..., ar ), 7 > 1L Ifa\o; =
(a1, vy Qic1,Qit1, - .., Q) denotes the same list of poles but
with one instance of o; removed, then

Fa(p,®) = By, (P, Fve, ([P0 -+ Pr2],®)) and  (101)

Ro(e, @) = Ra, (Ra\ai (z, €} -+ e ]),e’o) (102)
hold for input x, whenever
Prai=pr1, [po - pr2] =F ([po -+ pra]) and  (103)
co=co, [eh ] =Re([eo - ea]),  (104)
or, conversely, whenever
Pra=pra, [po - pr2]=Fu(q,[po -+ Pra]) and (105)
eo=-¢eo, |e1 - er1]=Ra; ([l - - erq],d), (106)
where
q= (plr_1 — T (F, (0,[po --- pr—Z])))/(_Oéi)r_l and (107)
d= (o — Hi(Ra;([e1 -+ €r1],0))) /(=) (108)
Proof. Let y = F(p,x) and let y, be vector entries. To

prove (103), first observe that p,.1 = 1.1 = p/._;. Then, from (101),
note that [p1 -+ pr1] = Fa, (po, [po - pr-2]). The desired re-
sults comes from inverting the effect of F;,; on both sides, i.e., by
applying convolution with [ 1 «; ]. To prove (105), solve for ¢ in

pr1i = Ti (B (¢, [po -+ pr2l)) (109)
=T1(F;(q,0)) + Ty (B, (0, [po -+ pr2]))  (110)

= (=) g+ Ti(Fa; (0,[po -+ pr2]))- (111)

The proofs for (104) and (106) are analogous. O



