
Alexandre Valdetaro Porto

A non-intrusive solution for
distributed visualization and
collaboration in a visualizer

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE INFORMÁTICA

Programa de Pós–graduação em Informática

Rio de Janeiro
March, 2013



Alexandre Valdetaro Porto

A non-intrusive solution for
distributed visualization and
collaboration in a visualizer

DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós-Graduação em
Informática of the Departamento de Informática, PUC-Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática

Advisor: Prof. Alberto Barbosa Raposo

Rio de Janeiro
March, 2013



Alexandre Valdetaro Porto

A non-intrusive solution for
distributed visualization and
collaboration in a visualizer

Dissertation presented to the Programa de Pós-Graduação em
Informática, of the Departamento de Informática do Centro
Técnico Cient́ıfico da PUC-Rio, as partial fulfillment of the
requirements for the degree of Mestre.

Prof. Alberto Barbosa Raposo
Advisor

Departamento de Informática — PUC-Rio

Prof. Alessandro Fabricio Garcia
Departamento de Informática — PUC-Rio

Prof. Renato Fontoura de Gusmão Cerqueira
Departamento de Informática — PUC-Rio

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cientifico — PUC-Rio

Rio de Janeiro, March 26th, 2013



All rights reserved

Alexandre Valdetaro Porto

BSc. in Computer Engineering at PUC-Rio - 2012. Since
2009 works at Tecgraf developing virtual reality and scientific
visualization systems.

Bibliographic data
Valdetaro Porto, Alexandre

A non-intrusive solution for distributed visualization and
collaboration in a visualizer / Alexandre Valdetaro Porto;
advisor: Alberto Barbosa Raposo. — 2013.

v., 55 f.: il. (col.) ; 29,7 cm

1. Dissertação (Mestrado em Informática) - Pontif́ıcia
Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2013.

Inclui bibliografia.

1. Informática – Teses. 2. Visualização distribúıda. 3.
Colaboração. 4. Orientação a componentes. I. Raposo,
Alberto Barbosa. II. Pontif́ıcia Universidade Católica do Rio
de Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004



To my brothers of the DT.



Acknowledgments

I would like to express my deep gratitude to Professor Alberto Raposo,

my research advisor for his patient guidance and useful critiques of this work. I

would also like to thank Mr. Thiago Bastos for his valuable friendship, advices

and ideas. My grateful thanks are also extended Mr. Pablo Elias, Mr. Vinicius

Rodrigues, Mr. Rodrigo Braga, Mr. Luciano Monteiro and Mr. Thiago Maioli

for their friendship and support.

I would also like to thank Petrobras for funding our host project Siviep.



Resumo

Valdetaro Porto, Alexandre; Raposo, Alberto Barbosa. Uma
solução não intrusiva para visualização distribúıda e
colaboração em um visualizador.. Rio de Janeiro, 2013.
55p. Dissertação de Mestrado — Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Neste trabalho apresentamos o design e implementação de visualização

distribúıda e colaboração para um visualizador 3D imersivo. Começamos

apresentando, em um alto ńıvel de abstração, nosso design de um

visualizador genérico. O design segue a abordagem MVC, isolando todos

os objetos de negócios na camada de baixo da aplicação para torná-la

modular e extenśıvel, permitindo assim a mais fácil prototipagem de

funcionalidades e isolamento de algoritmos complexos da lógica de negócios.

Este design como solução surgiu da necessidade real de um visualizador

de implementação monoĺıtica, cuja manutenção e aprimoramento se

encontravam com alta complexidade devido à mistura entre a lógica

de aplicação e os diversos algoritmos de visualização e distribuição.

Esperamos que nosso design possa ser reutilizado como inspiração para

outros visualizadores que queiram reduzir a complexidade e o custo do

desenvolvimento de novas funcionalidades de negócios. Sobre este design,

então, apresentamos o design e implementação detalhados de um módulo

que provê visualização distribúıda e colaboração para o visualizador. Este

módulo é não intrusivo porque não requer qualquer mudança na arquitetura

da aplicação, e esta pode se tornar distribúıda apenas pela inclusão do

módulo. Este módulo serve como prova de conceito para o nosso design,

por solucionar um problema clássico de distribuição e sincronismo em um

visualizador de maneira transparente para a lógica de negócios. Ainda

implementamos um visualizador exemplo com este design e nele conectamos

o módulo proposto, onde verificamos ambos o sincronismo da visualização

distribúıda e a consistência da colaboração entre múltiplos nós, avaliamos

também o impacto no desempenho causado pela visualização distribúıda.

Palavras–chave
Visualização distribúıda. Colaboração. Orientação a componentes.



Abstract

Valdetaro Porto, Alexandre; Raposo, Alberto Barbosa. A
non-intrusive solution for distributed visualization and
collaboration in a visualizer. Rio de Janeiro, 2013. 55p.
MSc Dissertation — Departamento de Informática, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

In this work, we present the design and implementation of distributed

visualization and collaboration for a, immersive 3D visualizer. We start by

presenting, on a high abstraction level, our design of a generic visualizer.

The design follows an MVC approach, isolating all the business objects

in the lowest level of the application, making it modular and extensible,

therefore providing an easier prototyping of functionality and the isolation

of complex business logic algorithms. This design as a solution came

from the real necessity of a visualizer with a monolithic implementation,

whose maintainability and improvement are impaired due to a high

complexity because of the coupling between the business logic and the

diverse visualization and distribution algorithms. Our hope is that our

design can be reused as an inspiration for other visualizers that wish

to reduce the complexity and cost of the development of new business

functionality. On top of this design, then, we present the detailed design

and implementation of a module that provides distributed visualization

and collaboration to the visualizer. This module is non intrusive because

it requires no changes to the application architecture, and the application

can become distributed just by the inclusion of the module. This module

serves as a proof of concept for our design as it solves a classic problem of

distribution and synchronism in a visualizer in a way that is transparent

to the business logic. Also, we implemented an example visualizer with our

design and our proposed module, where we verified both the synchronism

of the distributed visualization and the consistency of the collaboration

among multiple nodes, we also evaluated the performance impact caused by

the distributed visualization.

Keywords
Distributed visualization. Collaboration. Component oriented.



Index

1 Introduction 12

2 Immersive Visualizers 16
2.1 Rendering in Immersive Applications 16
2.2 Background and Motivation 18

3 Related Work 21

4 Design of a Modular Visualizer 25
4.1 Definition of the Visualizer’s Building Blocks 25
4.2 Structuring of the Visualizer’s Building Blocks 27

5 Distributed Visualization and Collaboration Module 34
5.1 Domain Distribution 34
5.2 Collaboration 36
5.3 Distributed Visualization 37
5.4 Integrating with the Visualizer 39

6 Implementation of the DVCM 40
6.1 Remoting Submodule 40
6.2 Distributed Shared Objects 42
6.3 Distributed Visualization 44
6.4 Results 46

7 Conclusion 49
7.1 Future Work 51

Bibliography 52



Figure List

1.1 Immersive distributed visualization of an oil field 13

4.1 Chart showing the relation between the domain, the scenes and the
entities 26

4.2 Business data visualization. A discrete property along a riser is
mapped to colors and geometry. 28

4.3 Blueprint of the the visualizer architecture 30
4.4 DMF architecture overview 31

5.1 Arbiter Topology 37
5.2 Steps towards displaying a frame with distributed visualization. 1-

Master sends the frusta and commands the slaves to render. 2-
Master waits at checkpoint until all Slaves reach it. 3- Master
commands Slaves to display. 38

6.1 The broker pattern diagram as shown in [37] 41
6.2 Unnecessary cycles in the network traffic 44
6.3 Topology of a system with Collaboration and Distributed

Visualization working together 46
6.4 Distributed visualization with 4 nodes of a typical scene in Siviep 48



Table List

6.1 Frame rates and performance comparison of different cluster
configurations 47



It seems that I know that I know. What I would
like to see is the ’I’ that knows me when I know
that I know that I know

Alan Watts, .



1
Introduction

Immersive applications seek to provide an experience to the user as close

to real life as possible. Such experience must re-create sensorial stimuli and

perception of space in order to induce the user’s brain into believing that the

immersive experience is real life. Although an immersive experience can be

delivered by any kind of system, Real-Time 3D visualizers may stand out as

the key player in the field (Figure 1). A visualizer is an application that enables

the user to visually explore a virtual scene. The success of such applications is

consequence of many features combined, such as, credible visual input to the

user by usage of modern computer graphics techniques, enhanced illusion of

visual and auditive depth due to stereoscopy, precise and immediate control

thanks to real-time reading and processing of user input and a natural and

intuitive manipulation of the environment by the usage of augmented reality

techniques. Therefore, the development of an application that provides an

immersive experience to the user can be very complex because of these many

requirements and their implementation in a real-time reactive system.

Any real-time application must be reactive, i.e., it must process input

from external devices with a delay small enough not to break user immersion.

Moreover, the interactive visualization requires that at least a given amount

of frames be rendered every second. Thus, efficiency is the utmost requirement

when developing a feature in a real time 3D visualizer.

In order to achieve maximum efficiency in a visualizer’s many routines,

e.g., rendering, input processing, distribution, data loading and so on, there is

a natural tendency of the developers to trade abstractions for low-level APIs

in order to have access to every available optimization setting. However, the

exposure of every low level API to the business logic developer can greatly

increase the complexity, which may lead to an increase in the lifecycle cost

[10] and effort [23] required to maintain and extend a visualizer with new

functionalities.

To the best of our knowledge, the majority of the 3D visualizers, where

efficiency is paramount, are implemented in a monolithic way. There is no clear

separation between business, distribution, rendering, architectural elements



A non-intrusive solution for distributed visualization and collaboration in a visualizer 13

Figure 1.1: Immersive distributed visualization of an oil field

and so on. This approach can have some advantages because the development of

every functionality has access to every low level system, therefore the developer

can highly optimize the rendering, distribution and other consequences of the

developed feature. However, from our experience (section 2.2) the constant

increase in complexity for the development of simple business/application

features, and the tight coupling between the logic layers can seriously impair

the maintainability and extensibility of the application. Which can lead to a

stall in productivity, where developers suffer with the high complexity they

need to understand in order to develop a simple feature and also the risk of

breaking some other feature.

The application programmer, which develops the features that aggregate

real knowledge value in a software, should be focused on the domain of the

application, the business logic, transactions, user interface and any other front

end concern. Therefore the application programmer should work with as much

high level abstractions as possible, such as frameworks, tools and middlewares

[35]. However, one must always consider the trade-offs when abstracting low

level systems, as the usage of low level optimizations may be necessary in many

cases as explained above.

In the first part of this work, we propose a design for an immersive



A non-intrusive solution for distributed visualization and collaboration in a visualizer 14

real-time 3D visualizer. With this design, we aim to reduce the complexity

and increase the productivity during the development, maintenance and

improvement/upgrading of the visualizer. Our main requirements for this

design are modularity and extensibility, which can be very closely related

and the former is a necessity for achieving the latter. Modularization of an

application by itself can be of no use, there is no direct gain in separating pieces

in modules. However, if we are able to separate cohesive parts of the application

into modules and expose clean interfaces we may benefit with abstractions

and greater flexibility. Abstractions come naturally as the modules begin

to represent something more concrete and the flexibility comes from easily

switching one module for another or attaching a new module to an already

running system. This flexibility also implicates in testability and extensibility

as we can easily switch real modules for test modules and prototype new

functionality without changing the already running application.

The necessity for these design guidelines came from our witnessing of

a high complexity of developing and testing new features in our host project

which was also designed in a monolithic way as we explain in section 2.2. In

order to achieve all of the benefits of modularity and extensibility, we first

need to cohesively separate the visualizer in modules, therefore we followed

the MVC concept. Our approach is to isolate the business objects in the

“business layer”—the Model—, which is the bottom layer of the visualizer

and is accessed by every other layer above it. Since the business data is the

only real data that the user is concerned about, every other layer above

is a mere representation of the data—the Views. Hence all the graphical

representation and user interactions elements must rely only on the data stored

in the business layer. Moreover there is ideally no side communication between

these representative elements, since it can break the consistency between the

representation and the real data. Such separation of data and view provides

us extensibility for the application, considering that every additional element

that we deploy must only guarantee a consistent representation of the data it

is interested in. Also, the possibility of switching parts of the system easily.

E.g., the scene graph implementation can be switched between a very efficient

and licensed per station library for displaying a scene in massive immersive

environments and a cheaper licensed library for common desktop usage.

In the second part of this work, we then propose the design and

implementation of a module that transparently provides distributed

visualization and collaboration for the designed visualizer. The module

works by applying and observing changes to the model in our MVC design.

It is non intrusive as it requires no modification in the other modules and



A non-intrusive solution for distributed visualization and collaboration in a visualizer 15

therefore keeps the application developers indifferent of the distribution

which can greatly reduce the complexity and increase productivity. The same

configuration of modules can switch from local to distributed just by the

addition of this module. We hope this module serves as a proof of concept for

the modularity and extensibility of our design as it solves a classic problem of

distribution and synchronism in a visualizer in a way that is transparent to

the business logic.

We also implemented an example visualizer into which we designed

and tested the distribution module. This example system became our new

implementation of our host project as explained in section 2.2 . An immersive

visualizer when visualizing distributively must have frame synchronism

between multiple distributed views of the same scene with an acceptable loss

if compared to a local rendering. Frame synchronism is the guarantee that

every node displays the same frame at every rendering cycle—an thus have

the same number of frames per second—and this synchronism is guaranteed

by our algorithm, so our tests goal is to measure the performance loss of the

distribution. As for the collaboration, which is not critical for the immersive

visualizer, our test are only practical tests for our arbiter topology scheme

consistency as any more complex real time manipulation with advanced

collision treatment escapes the scope of this work.

This dissertation is organized as follows: In Chapter 2 we delve into

the functionalities and the problems that arise when developing an immersive

visualizer, as well as our background and motivation for this work. In Chapter

3 we walk through the available solutions for our distributed visualization and

collaboration requirements for an immersive visualizer. In Chapter 4 we explain

our design for a visualizer oriented towards modularity and extensibility. In

Chapter 5 we explain our design for the module that provides distributed

visualization and collaboration for the visualizer. In Chapter 6 we explain the

whole implementation of the module designed in Chapter 5 and provide some

results of our example system implementation. In the last chapter we present

some conclusions and show possible future work.



2
Immersive Visualizers

2.1
Rendering in Immersive Applications

Rendering, in computer graphics, is the process of generating an image

from a virtual scene. The generated image can then be used for multiple

purposes. The most obvious purpose is to display the image in a screen to

the user. However, the image can be the input to another render process, to

some data analysis, to a file and to a video, among other uses.

The process of rendering is usually parallel, where there is a different

execution line for each part of the output image. A simple scenario, is when

a single rendering device—usually a graphics card—is rendering a full view of

one scene, that is, there is only one observer of the scene, only one view of

the scene and only one output image. In this scenario, a scene is processed

in parallel inside the graphics card GPU, every pixel of the output image is

delegated to a different execution thread, the final image is then output by

the graphics card. In this basic scenario, there is only one layer of parallelism

and it is contained inside the graphics card GPU, transparent to anyone that

does not deal with shaders and GPU programming. However, in immersive

applications, sometimes there is more than one view of the scene, more than

one observer, more than one output image or more than one rendering unit.

These usually fall into the distributed systems realm, where there are more

layers of parallelism on top of the one just mentioned and there are several

approaches for rendering and displaying, which are covered below.

2.1.1
Distributed Visualization

Distributed visualization is the process of displaying a single virtual

scene from multiple views. Although these multiple views are usually displayed

on different visualization output units, there are cases in which they are

displayed in a single one, such as in stereoscopic rendering. The users observe

simultaneously all of these views that are windows to the virtual world. These

multiple views can be a result of a single or many observers. When there are



A non-intrusive solution for distributed visualization and collaboration in a visualizer 17

multiple observers, each one of them is exploring the scene differently, and

there is no real synchronization issues between the views considering that each

view will be output to a different user of the system. When there is only

one observer however, the many views are going to be output to the same

user–or group of users—hence the requirement for correct synchronization. In

this work, we aim to solve this synchronization for distributed visualization of

a single observer with multiple views of the virtual scene. Thus whenever we

mention distributed visualization from now on we are referencing such case.

When a user views a scene through multiple screens—with different

views—he enjoys a greater level of immersion than a user viewing through

a single screen. However, displaying a scene in different screens creates a few

additional requirements. First, the user is represented by a virtual observer,

which looks at one direction and is positioned somewhere inside the scene.

Therefore, based on this observer and the position of the screens in the real

world, the application must calculate the appropriate different views for every

screen, or the immersion would be broken. This calculation, despite not being

trivial, requires only the information about the displaying devices positions

and orientation in the real world.

The real problem of displaying to multiple screens is the technical

problem of how to render and synchronize so many views and output to

different screens. A traditional approach to achieve distributed visualization

is through the usage of out-of-the box systems that make use of dedicated

hardware. The hardware controls all the visualization devices. Such solution

presents, usually, a high cost of deployment and maintenance.

Another approach, is to use a single computer and output to multiple

screens. Most of the mainstream high-end graphics cards can output to 2

different screens, and some special product lines like nVidia’s Quadro Plex

can output to up to 4 screens. Thus, a single machine could have 2 Quadro

Plex and that way having a total of 8 outputs, which could be acceptable for

many applications. Although the aforementioned setup seems to be a solution,

in reality there are two serious problems that arise from that architecture.

First, the price of a non mainstream graphical card can be very high. One

could argue that in a multiple screen scenario, the price of the equipments are

already expensive, and a specialized graphics card is acceptable. Such point of

view is reasonable and true in many cases. Therefore, the real problem with a

single machine with multiple screens lies in the rendering bottleneck.

The rendering speed depends roughly on the amount of geometry—the

number of vertices of every object in the viewable scene—being processed and

the size of the output image. Therefore rendering multiple views of the same



A non-intrusive solution for distributed visualization and collaboration in a visualizer 18

scene gets very expensive in terms of processing, specially if the output images

have to be very big for display walls. Consequently, distributing the scene to

multiple nodes can be a feasible solution—despite the distribution difficulties.

There are many possible designs of a visualizer that provide scene distribution

as well as many tools available for it. In the related work section we make a

review of the main available tools and their usefulness for our scenario.

2.1.2
Collaboration

Collaborative software is a software that enables multiple users to

collaborate to achieve a common goal [29]. A collaborative visualizer lets the

users explore a common scene, and possibly make changes and view other

users avatars in the scene. The most common case of a collaborative visualizer

is a multi-player game, where the players interact with each other in a shared

virtual world. The players can talk to each other, engage non player characters

and change the persistent world in many ways.

There is a considerable technical difference of achieving collaboration in

the domain of games and that of scientific visualization. A game must be

protected against cheating and invalid input from users, must have a low

latency, must be fast to resolve inconsistencies when more than one player

is changing the same part of the world and sometimes cope with a massive

amount of changes at the same time. All of these problems from the gaming

domain require very complex techniques to be solved. However, usually in

a scientific visualizer, there is no need for checking against possible malicious

input from the users, there is no need for a very low latency, there is no massive

amount of users at the same time and also there is never more than one user

changing the same part of the world simultaneously, as the user must first take

control then change anything. Hence collaboration in the scientific visualization

domain is much simpler than in games. The module that we propose in this

work is aimed at scientific purposes, and provides collaboration in a simple

topology, where there is a server that is responsible for persisting the world

and clients communicate directly with it by two-way updates.

2.2
Background and Motivation

This work is developed as a part of SiVIEP (Integrated Visualization

System of Exploration and Production) project. SiVIEP is an immersive

scientific visualizer, which supports visualization of reservoirs, geological

surfaces, wells, risers, platforms and many other objects from the oil field



A non-intrusive solution for distributed visualization and collaboration in a visualizer 19

domain. All of these objects can be visualized together inside one project

in a 3D multi-screen stereoscopic setup, controlled by several manipulators

and tracking devices. Many supported objects pose already a challenge to be

rendered in a single screen due to the number of polygons, simulation data

and property visualization. Therefore, complex distribution algorithms must

be employed for the system to be able to render all the required objects in a

multi-screen stereoscopic setup.

SiVIEP’s current production version is a monolithic C++ application

using Qt for user interface and OpenSG [5] for distributed rendering. There

are some bottlenecks with the distribution provided by OpenSG [5] for our

scenario, and these are discussed in the related work section. Also, the

complexity of adding new business objects to the current C++ version is

too high due to the tight coupling between many non cohesive parts of the

application.

We started this work to provide a solution for these SiVIEP issues with a

new design that could isolate the rendering and distribution complexity from

the business logic. However, we would have to provide a solution for distributed

visualization in this new design of SiVIEP since it will no longer use OpenSG

due to the known problems in the library’s API. Moreover, collaboration has

always been a milestone in the project’s backlog and there has been no feasible

solution for it in the previous architecture. Also, some of our clients are also

programmers, and they wish develop their own business objects and tools as

separate plugins without the necessity of our intervention.

In order to provide deployment of modules in a service oriented paradigm,

the new SiVIEP shall sit on top of a lightweight C++ architectural middleware

based on code generation. This middleware named Coral [1] follows a

component oriented paradigm and provides some very important features for

our system, which are:

– Reflection/Introspection;

– Descriptive language for specification of components, interfaces and other

types;

– Toolkit for code generation and component creation;

– Module based deployment and extension;

– Full bridge for Lua scripting language [17];

Middleware has historically targeted enterprise systems, which typically

involve many disparate software systems distributed across multiple company



A non-intrusive solution for distributed visualization and collaboration in a visualizer 20

divisions [36]. Hence the mainstream middleware works at a very high level

of abstraction, prioritizing flexibility over efficiency, and is of limited utility

for systems with strict efficiency requisites such as real-time systems, games,

natural user interface applications, and sometimes even cloud applications [26].

However, for a middleware to be useful in designing an efficient application at a

fine level of granularity such as representing every entity and interface element

in a 3D game—its abstractions should pose little to no overhead over the native

language constructs.

Coral is a multi-paradigm C++ architectural middleware which emerged

from a necessity in SiVIEP due to the lack of general C++ architectural

middlewares for the niche where the language thrives most—efficiency—which

had been SiVIEP’s case. In our experience, most C++ applications miss out on

powerful architectural abstractions due to the lack of an efficient, ready-to-use

middleware.

Coral’s hypothesis is that, with a C++ architectural middleware carefully

designed for efficiency, even demanding applications can benefit from a diverse

range of techniques such as service orientation, dynamic module deployment

and component composition, model-driven engineering, scripting and rapid

prototyping—among others—thus helping control complexity and reducing

costs. Coral is an ongoing open-source project to develop such multi-paradigm

architectural middleware, and results so far are encouraging.

With the usage of Coral, the new SiVIEP is being built as a modular

application. The modules vary from time critical such as the scene graph

modules (currently OSG [4] and VL [6]), which are very low level, efficient

and written in C++, to the UI module, which is high level, easily readable

and written in Lua.



3
Related Work

A number of generic solutions for distributed visualization have been

developed, and are available commercially or open source, e.g., Equalizer

[12], Chromium [16], [5] and VRJuggler [9]. Some of those are completely

transparent, some require a certain level of adaptation from the programmers

and some force its own programming model. In the collaboration field, most

of the state of art solution are far more complex and generalist than desired

for this work. However, some of these works contributed to model our solution

and are going to be detailed here.

OpenSG [5] is a scene graph as much as any non-distributed scene graph.

A user can develop using OpenSG without distributed visualization in mind

despite being one of the scene graph’s major features. The distribution strategy

of OpenSG works by distributing the scene graph with all the graphical

nodes containing vertices, textures, matrices and other graphical primitives.

Therefore all the graphical nodes must be serializable. Making a serializable

graphical-node is simple if it is a regular triangle mesh that requires no

processing during runtime because the node will be serialized once during

pre-processing only. However, many nodes have constantly varying set of

primitives such as: large on-demand loaded files such as terrains, photo-realistic

detailed meshes with continuous level-of-detail techniques, simulation data

visualization and so on. These variable nodes are very expensive to distribute,

as their data is constantly varying and can be of very large size. Taking our

oil field visualizer scenario as an example, most of our domain is composed

of simulation data, that requires different visualization modes with generated

graphical data on demand. Therefore, this graphical distribution approach is

not suitable for us.

Chromium [16] works by creating a powerful abstraction of the OpenGL

API, that is, it intercepts every call to the API and executes a scalable

rendering algorithm to distribute the call among multiple nodes. Such approach

is very clean and non-intrusive, but requires the constant distribution of

graphical data, which can be a bottleneck if the scene is very diverse so that

the GPU memory will need to be updated frequently. Also, this approach does



A non-intrusive solution for distributed visualization and collaboration in a visualizer 22

not consider collaboration. In order to provide collaboration with Chromium,

a whole separate solution must be implemented.

Equalizer [12], Chromium[16] and VRJuggler [9] are tailored for parallel

and scalable rendering, that is, using multiple nodes for rendering the same

scene independently of the number of screens. They all support outputting the

rendered scene to multiple screens making distribute visualization feasible.

One of these tools stand out as the most complete and non-invasive, the

Equalizer [12]. It is a very powerful and complete tool that forces the

programmer to abstract the rendering code from the rest of the application.

Thus, it distributes this rendering client for the slave nodes. Such nodes

perform rendering tasks controlled by a master node, which is configured

by configuration files describing the available resources in the cluster as well

as the desired compositing strategies. The application is unchanged for any

kind of scalable setup. The rendering in the slave nodes can be configured for

many different compositing strategies [28], such as sort-first or tile based, DB

based or sort-last, among others [22]. After one of these strategies is used, the

output image is copied to the configured output walls/screens. Such strategy

of scalable rendering is very powerful, but unnecessary for a typical case of

multi-screen rendering setup (our whole range of cluster examples fit the

common case) where every screen is driven by an individual node of the cluster.

Also, if the application is going to be used in single computer workstations to

visualize the same projects, then using the scalable rendering system to achieve

better system results can be pointless, as the scene needs to be processed by

a single machine as well.

All of the aforementioned solutions provide the distribution on the

graphical layer of the application, that is, they distribute graphical code,

graphic controlling commands, graphical primitives and so on. However, for

a collaborative visualization to be achieved, a distribution of the business

domain (not just its graphical representation) is necessary. Therefore, in the

mentioned approaches, the collaborative visualization would have to be solved

by other means. In this work’s solution, we provide a DSO (distributed shared

objects) system for our domain data. That is, our domain data is a single

shared graph among the nodes. This way, our solution provide collaboration

through two-way updates of local changes for every node. Moreover, this same

solution will serve as the ground for our multi-screen rendering algorithm to

work with, as all the graphical representation can be loaded locally based on

the received domain information.

Equalizer [12] and VRJuggler [9] provide some mechanisms for the

developer to distribute generic data, but those do not solve our collaboration



A non-intrusive solution for distributed visualization and collaboration in a visualizer 23

requirements because their distribution is push-oriented (one way) with the

concept of master and slave objects and provides just limited support for a

slave to update a master object (Equalizer). Nevertheless, even though their

DSO approach had been more generic allowing two-way communication, such

as other pure DSO approaches [18] [20] they would still be inferior to our

approach due to versioning. Every DSO system needs internal versioning of

objects, and they need to provide a way for the user to develop objects that are

distributable, be it inheritance, description, reflection and so on. Our scenario

requires distribution of objects that are instances of components, and even

though it is possible to implement a bridge to a specific component system

in the serialization methods provided by the DSO system, our system would

have to conform to the versioning system of the library. This work’s solution

intends to preserve the application own versioning system.

Our approach differs from the ones above in a way that it distributes the

application domain in the application layer instead of the domain graphical

representation in the graphical layer. That way, we solve a collaboration and

multi-screen rendering requirements at once. Although we might have a less

scalable rendering system than the scalable rendering approaches because

it does not support any decomposing/recomposing strategies as well as no

load-balancing, which is not a problem in our case as we explained above. Every

node will have the domain, they edit and share it, so any collaboration entities

in the domain such as selections, avatars and so on will be distributed. From the

domain, the node will create the scene and render it. If there is a multi-screen

setup, then a multi-screen render controlling API should coordinate rendering

based on calculated frustum and camera position by a render master. The

output rendered image will simply fill its default graphical output as there is

no recompositing to be done. This way, all of the component-based application

domain can be extended incrementally as our whole design expects (more

domain specific objects) with a simple module that distributes it and enables

multi-screen immersive rendering.

For our implementation of the framework proposed in this work,

there needs to be a low level, inter-machine, communicating tool. The

implementation of such tool is also part of this work and all the research

done for it is detailed below.

One paradigm of communication is a message oriented one, such

as MPI, where a communication channel is used to write messages that

shall be received by another remote(s) communication channel(s). This

approach is asynchronous, not transparent and exposes the unreliability of the

network for the user and although it makes the handling of network failures



A non-intrusive solution for distributed visualization and collaboration in a visualizer 24

easier, it completely breaks encapsulation and most of current programming

models (object orientation, component orientation, services among others).

Implementing a distributed multi-screen rendering system on top of a raw

messaging system can became very complex as there should be a separation of

concerns: functionality, distribution and fault tolerance [32].

The other paradigm of communication is Remoting or RPC—Remote

Procedure Call—, such as CORBA [24], RMI [2] and .NET remoting [3],

where the encapsulation models are preserved, and every bit of communication

among network nodes is made through the same means of local communication

among entities, be it functions, methods or services. As the RPC approach

abstracts the network, it can be much more complicated than messaging

when it comes to dealing with network failures. Thus, in a big, unreliable

and heterogeneous networking environment, in order to maintain network

transparency, a messaging system associated with appropriate distributed

algorithms can be a better approach [31]. The RPC paradigm can be a better

option for reducing the complexity of implementation if the underlying network

is reliable. Our solution is tailored for reliable networks, so we believe an RPC

approach is the most appropriate solution.

In the next chapter we describe the design of a visualizer following the

MVC approach, in which our distribution will be integrated.



4
Design of a Modular Visualizer

In this chapter we present an architecture for a modular and extensible

visualizer, we explain the rationale behind every separation of concerns and

layers and why this design works for our scenario. As explained in the previous

chapters, although our main goal is to present a solution for distributed

visualization and collaboration, our scope goes beyond the features, reaching

the architecture of the visualizer as well. It becomes necessary to explain all

the visualizer’s architecture because it needs to follow a specific paradigm of

modeling, which is necessary for extensibility and modularization.

4.1
Definition of the Visualizer’s Building Blocks

In this section we define the main concepts and abstractions we use in our

design. We analyze the main building blocks and their purposes conceptually.

Domain and Entities The domain of an application represents business

knowledge—as the model—in a MVC paradigm. What we have referenced

in the previous sections as business data or the business objects layer,

is technically the application domain. It is a mirror of the real world,

composed of all the real world objects that the application wants to

represent. Ideally, there should be a one-to-one correspondence between

the domain objects and their real world counterparts. These domain

objects are represented by Entities. Examples of entities in an oil field

visualizer application are risers, wells, reservoirs and so on.

Scenes We define a scene as a visualizable collection of entities with behaviors

and tags. This definition however, may be considered incorrect because of

our definition of domain, as the scene clearly has different properties and

elements than a real world object. Moreover a more purist definition

could consider the domain itself a scene, which is the case in many

visualizers. Nevertheless we regard the scene as business knowledge

because they represent snapshots of the same domain in different times,

configurations, simulation scenarios and so on. Figure 4.1 shows the



A non-intrusive solution for distributed visualization and collaboration in a visualizer 26

InstanceA

InstanceB

InstanceC
InstanceD

EntityA

EntityB

EntityC

Domain

SceneA

SceneB

SceneA

Figure 4.1: Chart showing the relation between the domain, the scenes and the
entities

structuring of our domain regarding scenes. Examples of scenes in an

oil field visualizer are: the oil field when exploration began, the oil field

in present date, the oil field in a catastrophe simulation scenario, etc .

Every entity must have a behavior associated in the scene. There may be

scenes where all the entities are static, thus behavior can be regarded as

only a position where the entity is located. In some other scenes, there

may be entities with attributes that vary with the time and may require

a more complex behavior structure. Some changes in the behavior are

non deterministic, like user input. Non deterministic changes cannot be

described, and must be applied as a direct attribute change.

Roehl [30] describes the deterministic behavior of entities in different

levels according to the way the attributes are modified with time. The

first level, 0, is a mere position coordinate in a {x, y, z} format. And

each level above adds a new variable that describes the variation of the

level below it in time, i.e. level 1 describes the variation of level 0 (the

position) on time.

In this work, we are only dealing with level 0 behavior, and therefore

scenes that have only static entities. The user can transform the position

of the entity, but no continuous time dependent behavior can be

associated.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 27

Representations These are the Views following the MVC concept. The

visualizer objective is to present the domain in many different ways to

the user. There may be canvases displaying a scene from the domain

and also tables and other UI pieces displaying relevant information. The

user should be able to navigate through the scene, thus changing the

camera position, interact with the entities, choose the relevant data to

be displayed and switch between scenes, or the user may even want to

switch to a different domain. These actions are a coarse example of the

interaction between the user and the visualizer, but they provide a good

measure of how the domain is changed and how the rest of the application

should react to these changes.

4.2
Structuring of the Visualizer’s Building Blocks

In this section we delve into the details of the interactions and underlying

organization/structuring of the building blocks.

4.2.1
Underlying Structures

Domain - Entity Graph We defined the domain as a collection of entities

and scenes. The entities are usually organized structurally as similar as

possible to the real world, considering that the structure itself represents

how the entities are related. Some environments may have a collection

of independent entities that have no relationship among themselves,

whereas some environments may have entities that are closely related and

may be organized in an associative or hierarchical structure. Moreover,

among with the entities, the domain contains scenes and maybe relevant

user configuration data—which is not by definition part of the domain

but can be included regardless. We designed the domain structure as a

graph, which provides the needed structural flexibility. Furthermore the

graph can be versioned, shared and persisted if needed.

Entity - Attribute Collection The entities are collections of attributes

with no relational structure associated. Some are purely for the entities

appearance, i.e., models, colors, materials, etc. However, there is also

the possibility of associating relevant business data, such as properties,

simulation data, and so on. Regardless, all of this business data has to

be visualized in some way (Figure 4.2) even if their description does not

directly imply in something visual.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 28

Figure 4.2: Business data visualization. A discrete property along a riser is
mapped to colors and geometry.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 29

Domain Manipulator and Versioner This is the Controller in the MVC

concept. It is a module called Domain Model Framework that connects

the Domain to the many representations of it to the user. It is explained in

the following section when we cover the interactions among the elements.

Scene - Behaviours and References The scene is an arrangement of

entities by their behaviors. This arrangement can unmistakably contain

chunks of the entity graph of the domain, and in some cases, be an exact

copy of it. Nevertheless we designed the scene as a graph of references

to entities with behaviors attached, which are structures that can be

processed directly by the rendering system.

User Interface The user interface or UI is the topmost layer in our system,

ideally it should be able to interact with most of the application. It

is comprised of a collection of interface elements, i.e., buttons, boxes,

labels, fields and so on. All these elements when interacting with the

user should alter the other layers below. Although we defined that there

should be no sideways manipulation among layers above the domain,

the UI may sometimes need to control certain functionalities that are

not in the domain layer. This happens when the user wants to change

how the scene is visualized, such as which property for an entity, which

scene from the domain and so on. Nevertheless there should never be

any manipulation of graphical objects by the UI.

Other Modules The other modules should provide views of the domain,

domain editing functionalities, persistence and so on. These modules

should only work on top of domain data and thus have no business

data on them, their internal structring is irrelevant to the rest of the

application as there should be no access to them from any other module

except for the User Interface. Figure shows the layering overview of the

design.

Figure 4.3 shows the layering of the system according to the MVC

concept and an overview of the interfaces and interactions among the

many modules.

4.2.2
Interactions

As mentioned above, the domain should be an object graph. However,

this graph is not useful for the rest of the application only by itself. Its state

needs to be propagated through the layers above it, for that a system is



A non-intrusive solution for distributed visualization and collaboration in a visualizer 30

Views7

Controller7

Model7

GUI Scene

Domain7Model7Framework

Domain Entity71

Entity2
Entity5

Entity6

Entity3 Entity7

…

Manipulation7
Interface

Registration7
Interface

Simple7add/remove
Interface

Observer7
Interface

…

Register7ObserverManipulates
the7domain

Notifies7changes
in7the7domain

Apply7manipulation7results7to7the7domain

Scene71

Scene72

Figure 4.3: Blueprint of the the visualizer architecture

necessary. Therefore it is necessary to have a graph controlling system that

provides controlled access to the domain graph and notifications to everyone

that depends on it. We designed this controlling system as a non-intrusive

module that keeps track of all the changes in the object graph and provides

a fine grained notification system for the rest of the application. We call this

system the DMF—Domain Model Framework—(Figure 4.4). Every component

that applies some modification in the business object graph needs to certify

that these changes will be propagated to everyone else (Figure ??). Hence

whenever a change has to be applied to the graph, this change has to go through

the DMF. Consequently, every component that needs to display information

about a business object needs to be connected to the notification system of

the DMF.

The DMF notification system follows the Observer pattern [14]. Every

element that needs to watch the state of a piece of the domain will be registered

as an observer to that piece in the DMF notification system. Accordingly, the

DMF will notify that observing element whenever a change is applied to the

observed piece of the domain. The notification itself consists of the previous

and the current states of the piece. The DMF also provides a global graph

access system for the elements that need to change the graph. Notice that in our

design, the actual objects from the business object graph does not reside inside



A non-intrusive solution for distributed visualization and collaboration in a visualizer 31

BusinessfObjectsfGraph

...

Versioned
GraphDomain

DMF

ApplyfChanges

NotificationfAPI ControlfAPI

OtherfModules

A B

C Z

User

Observes

ApplyfChanges

ApplyfChanges

Figure 4.4: DMF architecture overview

the DMF data structures. As we mentioned before, the domain management

is non-intrusive. Therefore, the DMF has an internal graph containing meta

information about the actual objects and it keeps versioning information,

that is necessary for undo/redo operations and is also very important for our

distribution module that will be explained in the next chapter.

This non-intrusive approach makes the DMF generic and increases its

usefulness, as we can use it for any graph of objects that must be versioned

and shared. However, as the actual objects are not inside the DMF, there is

the risk of a business object being modified from outside of the DMF interface.

If this happens, then the will be an inconsistent state. Therefore, there must

be strict guidelines for the developers on the usage of such kind of framework.

The internal implementation of the DMF and its versioning algorithms

are not in the scope of this work.

The scene display module is obviously responsible for displaying the

graphical representation of the current virtual scene. However, depending on

the underlying graphical API workflow, this module’s design can significantly

vary. Graphical APIs can follow 2 different workflows:

Immediate Mode The graphical API is a mere set of functions to load and



A non-intrusive solution for distributed visualization and collaboration in a visualizer 32

draw graphical objects to a buffer. Furthermore the user holds all the

graphical objects and controls the rendering calls. The OpenGL, XNA

and DirectX are examples of immediate mode Graphical APIs.

Retained Mode The graphical API has an internal data structure that holds

all the graphical objects. The user may only add objects to this structure

and leave the whole drawing workflow to be handled by the API itself.

Moreover the user may register callbacks for manipulating the graphical

structures after the control is handled to the API.

Since our implemented example system uses OSG [4] and VL [6]—both

use retained mode—as graphical APIs, we explain the design of this scene

display module using a retained mode graphical API. The module is a simple

observer of the current scene and its referred entities, which are all contained

by the domain graph. Whenever a new entity reference is added to the current

scene, the module searches for a graphical representation for the object and

add it to the underlying graphical API. Never should the actor be modified

directly, it must always mirror the business object through observation. This

way, it becomes easy to switch the graphical implementation of the objects.

We may change the whole scene graph implementation without touching the

rest of the application.

The UI layer sits above the rest of the application, no module should

access the UI. The UI must make sure also that it does not change its own

state, which is very common if no special care is taken. E.g., if a button that

when pressed automatically changes its image and the button represents a

state of a business object, when the state of the object is changed by any other

means—be it collaboration, animation, task scheduling and so on—the button

will be left in an inconsistent state. Therefore, the developers must make sure

that these automatic feedbacks that usual UI frameworks have by default are

not enabled.

A simple example of this system design in practice: A user clicks in the

UI and wants to add a new object to the domain. The UI layer creates the

object and access the global DMF interface to make sure that the new objects

creation propagates. The DMF propagates the changes to every component

that observes the graph. The Scene module is notified of the new object, creates

an Actor for it and adds to the scene. The UI layer gets notified and also adds

a new entry to a tree-view widget that describes the scene.

In this chapter, we have explained our modular and extensible design for

the visualizer. In the next chapter, based on this design, we move on to describe



A non-intrusive solution for distributed visualization and collaboration in a visualizer 33

the module that will provide distributed visualization and collaboration when

attached to the visualizer.



5
Distributed Visualization and Collaboration Module

In this chapter we describe the design of the module that provides

distributed visualization and collaboration for our visualizer. We call this

module Distributed Visualization and Collaboration Module—DVCM— from

now on.

5.1
Domain Distribution

We intend to seamlessly connect this module to our visualizer, hence

transforming its visualization and workflow with only small changes in

configuration files. Nevertheless switching from local to distributed may create

a high risk for inconsistency if the application is not properly designed. This

inconsistency can be noticed when the application state is spread across

multiple elements and layers, hence making complicated for one instance of

the application to propagate its state consistently to another. However, in

our designed visualizer, we concentrate all the application state in a single

element—the domain—thus alleviating our effort designing distribution. Still,

in order to provide seamless integration with the application, this module must

distribute the application domain in an agnostic and non-intrusive way.

We followed the same approach as with the DMF design—explained in

Section 4.2.2—, we created a separate module with its own internal structures

that serve only for the module purposes, the actual application domain data is

controlled by the application. Hence the module observes and applies state

changes to the application domain, for that purpose it has a dependency

to the DMF. Therefore, our domain propagation strategy is clearly a mere

distribution of the DMF notification calls, and persisted through the DMF

domain control functionality.

In order to enhance the precision when dealing with dynamic entities,

we can describe the entity behavior with many levels as we explained in

Section 4 and distribute a higher level behavior, such as a position variation

function instead of the position only. However, we need to provide some time

synchronization algorithm as well as some kind of prediction algorithm for



A non-intrusive solution for distributed visualization and collaboration in a visualizer 35

this setup to work. If the reader wants, the system is flexible enough to be

adapted to support dynamic behavior distribution as our domain distribution

is agnostic. Also, even if there are only static entities, but there is a very heavy

user interference with the system, resulting in a network bottleneck, there is

the possibility of adapting a predictive algorithm such as Dead Reckoning. A

similar setup with dynamic entities has been developed by Ferreira [13]. His

system provides distribution of dynamic entities in a visualizer by using the

SNTP [27] time synchronization protocol and Dead Reckoning.

Our simple distribution strategy does not, however, contemplate dynamic

entities and heavy user input with latency by itself, the distribution and

redundancy algorithms are not covered here. Moreover, although there can

be inconsistencies if the system is deployed in a non robust network, our

desired scenario is mainly composed of static entities and our expected network

setup is also a controlled robust one, there is no need to synchronize the

time in every node, as well as no need for predictive algorithms. Our simple

distribution technique has shown satisfactory results in our example system

implementation, which contemplate effective for static scenes with a moderate

amount of users making changes in the domain (Example system results are

covered in Section 6.4). Nevertheless, this technique has some caveats. First of

all, if the changes are to be broadcast, then all the nodes must be in the same

sub-network. If they are in the same sub-network, there is still the problem that

any other nodes in the sub-network will receive the changes, possibly creating

conflict if two different data is being viewed by two different groups of nodes.

Moreover, the required bandwidth grows proportionally to the frequency of

changes in the visualization. However, in our design, we distribute only the

application domain, such as behavior information and selections. All the heavy

assets and data are loaded locally in each node, which alleviates the bandwidth

requirements if compared to a classic graphical data distribution model.

The broadcasting requirement that every node must be in the same sub

network may not be a problem at all. Such is because the utility of broadcasting

information is to enable a node to quickly update multiple remote nodes with

the same information, whereas using an one to one communication may take

too long and put a bottleneck in the node that needs to update the others.

Such bottleneck presents a problem for distributed visualization, as every frame

needs to be synchronized, additionally there is one node that is responsible for

updating the others and coordinating the frame synchronization, therefore a

bottleneck is such node can delay the frame. However, distributed visualization

setups, such as caves/display walls, are usually driven by a node cluster inside

its own sub network, which allows broadcasting.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 36

In a collaboration scenario, however, it is usually impossible to broadcast

because the nodes are not in the same sub network, as a result of users

working on the same data from different locations. Such limitation is actually

not a problem in a collaboration scenario because broadcasting alleviates

the bottleneck in the node that needs to update the others, as explained

above. However, out of the distributed visualization scenario, there is no such

bottleneck, or if there is, it won’t compromise the experience of the users.

Such is because the node that has to push the information does not need

to coordinate frame synchronization, therefore not blocking every other node

until all the information is pushed. Every node may receive updates to the

domain asynchronously and the reception does not interfere with its frames.

Moreover, the amount of bandwidth required is much smaller in collaborative

environments, as there is no camera information passed to every node every

frame.

5.2
Collaboration

In our shared domain scheme, whenever multiple users are making a

collaborative visualization, they can simultaneously change the same data,

therefore collisions are prone to happen. In online gaming realm, collisions are

a very difficult problem to handle because there can be a massive amount

of players interacting with the same data at the same time. Moreover there

is usually no action of “take control of an entity”before altering it in any

way, as the players are interacting with a simulated world, and requiring such

action may break the immersion. Therefore, the collision problem needs to be

handled very fast and smoothly so that all the players involved in the collision

feel that the object that triggered the collision is being really shared. Such

steep requirements are not the case in the scientific visualizer.

Entities in a scientific visualizer domain are not to be treated as objects

in a game. It is possible to apply a system where a user must first take control

of an entity in order to apply any changes to it. Such system eliminates the

problem of users sharing an object. Still, even if there is no control system,

the latency when solving a collision does not need to be so low as in games.

Therefore, it is acceptable to have an arbiter node responsible to keep the

consistency, and every change applied by every node must be verified by the

arbiter first, and only the arbiter and other designated nodes by the arbiter

can propagate the changes (see Figure 5.1).

In our example system, we just implemented simple collaboration with

no special collision treatment, i.e., we set one node to be the arbiter and every



A non-intrusive solution for distributed visualization and collaboration in a visualizer 37

Node4A

Node4C

Node4B

User4Input

Node4D
1.4Apply4Changes

2.4Asks4Permission

3.4Grants4Permission

4.4Propagates

4.4Propagates

Figure 5.1: Arbiter Topology

update to be propagated must go through it.

5.3
Distributed Visualization

Considering that all the domain data is properly distributed as explained

in the previous section, achieving distributed visualization becomes a simpler

issue, we need to calculate the views for every display output based on a

single observer and synchronize the frame displaying. These tasks must be

assigned somehow to nodes in the visualization cluster, hence we need to create

roles with appropriate responsibilities for the nodes. In order to accomplish

distributed visualization in our design, it is imperative that we assign at least

master and slave roles. There are many other roles for specific tasks that can

be assigned, but we explain here only the necessary ones, and leave space for

the extra in the implementation chapter. The node assuming the master role

is responsible for calculating the frustums based on the virtual observer and

synchronizing the time that every rendered frame is displayed across every

display device. Consequently, the slave nodes passively receive what frustum

they should use to render the scene and wait for the permission to display the

rendered frame. Figure 5.2 shows an overview of the nodes responsibilities.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 38

Render Master

Render Slave

Render Slave

Render Slave

Render Master

Render Slave

Render Slave

Render Slave

Waits at checkpoint

Checkpoint!

Checkpoint!

Checkpoint!

Render Master

Render Slave

Render Slave

Render Slave

Display command

Display command

Display command

1.

2.

3.

Figure 5.2: Steps towards displaying a frame with distributed visualization. 1-
Master sends the frusta and commands the slaves to render. 2- Master waits
at checkpoint until all Slaves reach it. 3- Master commands Slaves to display.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 39

The frustum calculation is done based on the output screens. Every

node has a number of outputs connected to it and they need to display the

current view of the scene on those. The view of the scene, is based on a

single observer—in a typical scenario—and therefore, this view should be split

between the nodes. The master node needs to know the display wall / cave

measurements and slave nodes disposition.

The frame synchronization is very simple. The master node must first

command every node to render—with the appropriate frusta transferred. Then,

after every slave node has finished rendering, the master node commands the

slaves to present their rendered frames. If this synchronization strategy is not

used, the user immersion can be broken, as there will be different frames being

exhibited at the same time.

There are also possible variations in the network topology. E.g., in a cave

setup, there may already be a cluster with one node responsible for splitting

the frustum and synchronizing the frame, other nodes that only render and

display, and the user can connect a notebook to the network, load projects and

personal configurations and manipulate the scene through it. There may also

be a dedicated node only with lots of different tracking devices configured and

its role is only to receive and handle input.

In the following chapter when describing the system implementation, we

will explain how to assign different roles for the nodes for with other roles

other than master and slave—splitting the frustum and synchronizing the the

frame, receiving and handling user input, manipulating the scene, rendering

and displaying the rendered frame may be split across different roles for the

nodes. There is however one case that our design is not directly created for;

separating the rendering and displaying tasks among different nodes.

5.4
Integrating with the Visualizer

So the DVCM should be a generic DMF observer that propagates local

changes to the network and network changes locally. In order to use the module,

when assembling the visualizer’s components through a startup script, there

must be a list of available options in the DVCM interface in order to assign its

role. These options must cover series of supported roles: local domain updates

to be propagated throughout the network, incoming domain changes are going

to be analyzed for collisions and confirmed or simply accepted, passively or

actively render and display o the screen, among others. All of these possible

setups are going to be covered and shown implementation-wise in the following

chapter.



6
Implementation of the DVCM

As we already mentioned in the motivation section, our example system is

an oil field visualizer implemented in C++ on top of the Coral [1] framework.

In this chapter, we walk through the whole implementation of the DVCM

module that currently works with our example system. We shall include some

low level details like which tools and frameworks we used and how the system

behaves during runtime.

6.1
Remoting Submodule

We shall start by laying the foundation for our distribution system to

work - namely our networking submodule which is the low level communicating

system that sits at the bottom layer of the DVCM module. We decided its

communication paradigm to be based on an RPC approach (as explained in the

related work section). As of such, an RPC based communication system needs

to completely abstract the remoting of components and therefore be completely

transparent to the programmer, which must treat every component as local. As

explained above, the RPC communication paradigm is not suitable for massive,

heterogeneous and unreliable network. However, our scenario is of small

homogeneous graphics clusters. Our programming model can be preserved with

RPC and the networking can be dealt with almost transparently.

Our RPC paradigm is similar to CORBA [24] by using a component

based approach [15]. In other words, the user is able to remotely instantiate

components and search for services and components. Any remotely acquired

service or component works exactly as a local one, except for the thrown

exceptions, which will have a whole new set of remoting error exceptions

that will increment the actual component-thrown exceptions. Although these

exceptions obviously break the transparency of the RPC, there is no such

thing as perfect network transparency, and therefore some precautions must

be taken.

The API consists of a single interface, an INode, which will provide

Client and Server functionality. The client sub-API provides functions for



A non-intrusive solution for distributed visualization and collaboration in a visualizer 41

Figure 6.1: The broker pattern diagram as shown in [37]

instantiating and searching for remote components. Whereas the server

sub-API should have a reactive method that handles all incoming requests and

dispatches the invocations for the appropriate objects. Also, the user should be

able to publish local instances through the server functionality of the INode.

Therefore, in order to use the INode, the user must keep regularly calling the

reactive method in order to handle remote requests, except when there is no

need to heed remote requests, i.e., the node is client only. However, if the user

passes any argument that is a local service, then the server functionality of the

node will be necessary, as the node that receives the service will need it.

We also implemented a system for synchronization among a group of

connected nodes, which we call Checkpoints. The system needs a master and

N slaves to work. The master creates a checkpoint, broadcast it to all the

slaves and stops at the checkpoint. Every slave, when reaching the checkpoint

send a message to the master and waits until the clearance of the checkpoint.

Eventually, when all the slaves reach the checkpoint and inform the master,

the checkpoint is cleared and the master broadcasts a clear message to all the

slaves so they can continue their normal workflow.

6.1.1
Internal Implementation

The internal implementation of the node is coarsely based on the broker

pattern [11] [37]. The main characters of the pattern are shown in Figure 6.1

and are:

– ClientProxy, which is the component that provides the interface between

the RPC module and the user.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 42

– Requestor, which receives the function calls from the ClientProxy and

communicates with remote nodes

– Marshaller, which serializes/desserializes the calls into messages to be

sent

– Invoker, which receives the invocation data and invoke the method of

the actual component

The interface between the Proxy that will be used by the user in the

client and Requestor can be direct or transparently through a ClientProxy as

described by [37]. In our module, we use a ClientProxy, and by the usage of

component reflection and introspection [21] the Requestor is called generically

by the ClientProxy. Any service method that has no value returned is

automatically called asynchronously, whereas methods that have return types

are called synchronously and thus are blocking. Notice that the asynchronous

calls can fail and the caller is going to be oblivious about it, so there needs to be

a protective mechanism when using them, such as callbacks and confirmation

statuses.

Local instances lifecycle shall be managed through leasing [11]. Whenever

a node requests a remote instance, a lease for that node is created inside

the node that contains the instance. That lease can be set to expire after a

determined time or left to be removed manually. If a local instance is not used

locally and has no more leases it can be destroyed or returned to a pooling

service.

For the transport layer, we used a library that creates abstractions for

connections, messages and guarantees message delivery. From the many options

researched, we decided to use ZeroMQ [7], which provides a well abstracted

socket system that handles N-to-N connections transparently and delivers

entire messages through various transports. It also supports multi-cast via

PGM [34].

6.2
Distributed Shared Objects

With the RPC module available, we move on to the distribution of

the application domain, namely the DSO system. We implemented the

distribution in a publish-subscribe scheme, thus we created two main interfaces,

unmistakably IPublisher and ISubscriber. The IPublisher simply has one

method, which provides registration of subscribers, and consequently accepts

an ISubscriber interface as a parameter. The ISubscriber interface has two

methods, onSubscribed and onPublish. The former is a initialization method,



A non-intrusive solution for distributed visualization and collaboration in a visualizer 43

it means that when the subscriber is registered in the publisher, the publisher

must push all of its current state into the subscriber. The latter is the

continuous update method that the publisher will call whenever there is a

change in its state. Clearly, we implemented components that provide the

functionality behind these two interfaces.

The component that provides IPublisher also provides an interface for

observing the domain via DMF (DMF is the Domain Model Framework

explained in Section 4.2). Then, whenever the DMF pushes a changeset into

the Publisher component, the latter internally rearrange the way the changes

are structured to make them compatible for the subscribers (if necessary) and

call every registered ISubscriber ’s with the restructured changes.

The component that provides ISubscriber has access to the domain

and consequently the DMF control API. Then, whenever a changeset comes

through the ISubscriber interface, the component propagate these changes into

the domain, and the DMF naturally propagates them throughout the rest of

the application.

These two components by themselves are not sufficient to realize the

DSO, we need to use the RPC module. There can be clients being publishers

and servers being subscribers and the other way around as well. E.g., if

we want a Server-Publisher/Client-Subscriber set up, the node that wishes

to be a Publisher-node, needs to make its IPublisher interface available for

remote use (avoiding the term publish again for clarity’s sake) through the

RPC. Consequently, the node that wishes to be a Subscriber-node needs to

search for the IPublisher interface of the Publisher-node and register its own

ISubscriber on it. The RPC module will automatically create also a Proxy

for the ISubscriber interface inside the Publisher-node, allowing the publisher

component to call the ISubscriber methods as local ones.

6.2.1
Configuring the Topology

With a node being only able to assume one role, it is only possible to

achieve a master-slave topology, where the master is going to be a publisher

and the slaves subscribers. However, we can easily set up a node to have

as many publisher and subscriber components as desired. Accordingly, we

can make two way updates in the master-slave topology just by adding a

subscriber to the master and publishers to the slaves. However, when a node

has both Publisher and Subscriber components, if no precaution is taken, an

update received through the Subscriber will alter the domain state, and thus

propagated again by the Publisher, which may lead to unnecessary network



A non-intrusive solution for distributed visualization and collaboration in a visualizer 44

Node A

DMF

Sub Pub

Node B

DMF

Sub Pub

Node C

DMF

SubPub

Pub
x

x

User Changes

Figure 6.2: Unnecessary cycles in the network traffic

traffic depending on the scenario. E.g., a two node collaboration topology,

where NodeA has its domain altered by user input and publishes the changes.

Consequently, NodeB receives the updates through its Subscriber component,

which changes NodeB ’s domain. NodeB ’s Publisher observed the changes in

the domain and propagates them again to NodeA, which has no use for the

updates as its domain is already up-to-date (Figure 6.2).

In order to avoid this unnecessary traffic overhead, we must incur in

the changeset, which nodes already up-to-date with the latest version of the

domain. The Subscriber that receives the change updates another component

that holds a map of known hosts and their current known domain versions.

The publisher always looks up in this map for publishers that already have the

latest domain version and do not propagate the changes to them.

6.3
Distributed Visualization

As explained before in Section 5.3, the distributed visualization requires

a simple master-slave topology. This topology is necessary for propagation

of domain and frame synchronization. In this section, we explain the

implementation of a distributed visualization scenario where there is a cluster

of N+1 nodes and N display devices. From these N+1 nodes, N nodes are

called RenderSlaves and have a display device attached. The other node is

called RenderMaster. We reference the ISubscriber and IPublisher interfaces



A non-intrusive solution for distributed visualization and collaboration in a visualizer 45

explained in Section 6.2.

In our sample scenario, the RenderMaster is responsible for distributing

the domain to all RenderSlaves and synchronizing the frame. Additionally, it

may assume different new responsibilities if the UserMaster, the DeviceMaster

or both are used. However, we start with the simplest case, with no additional

roles. In this simple case, the RenderMaster loads all the domain from local

files, as well as the position of every display device in real-world and which

RenderSlave is attached to it.

For an improved usability of the system, we make RenderSlaves being the

servers and the RenderMaster being the client. That is, the RenderSlaves are

configured to be totally passive, each one of them will start the RPC module,

and publish two interfaces on it: an ISubscriber and an IRenderSlave, which is

explained later on. After making these interfaces available for remote access,

each RenderSlave just waits indefinitely, therefore acting as a server. Moreover,

the RenderMaster looks up in the configuration files for the addresses of all

the RenderSlaves, then gets the published interfaces via RPC, thus acting as

a client.

From the retrieved interfaces, the RenderMaster gets all the ISubscriber

ones and add to its own IPublisher. The component that provides the

IPublisher also provides an interface that observes the DMF. Consequently, all

the changes to the domain are propagated to all the ISubscribers. Additionally,

the component that provides the ISubscriber interface inside the RenderSlave

has a receptacle for the DMF control interface, which is used to apply to

its local domain any changeset received from the ISubscriber interface. Now

the domain is shared among the nodes and consequently the same scene for

visualization. Therefore, we need only to make sure the frustums are properly

calculated and the exhibition of the frames is synchronized. As mentioned

before, we do not delve into details of the frustum calculation as it is not in

this work’s scope.

When starting the scene visualization, the user will be represented by

a virtual observer, which has a position and a view direction. There is an

external component that calculates the frustums based on the view direction

and the configuration file with all the display devices real-world positioning.

Therefore, by using this component, the RenderMaster obtains the observer

position and the frustums, namely the necessary parameters for rendering.

Then, it passes these parameters to the IRenderSlave interfaces, which are

already published by every RenderSlave. This interface provides functionalities

to the RenderMaster to control the RenderSlave, namely the setting of frustum

and position and the frame display command.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 46

Figure 6.3: Topology of a system with Collaboration and Distributed
Visualization working together

With the necessary parameters for the rendering the scene received,

the RenderSlaves start to render. Meanwhile, the RenderMaster creates a

Checkpoint (explained in Section 6.1) and waits for all the rendering to be

finished. After finishing the render, every RenderSlave hits the checkpoint

and inform the RenderMaster. Then, with all the rendering finished, the

RenderMaster clears the checkpoint and calls the frame display command in

the IRenderSlave interfaces.

If the user connects a separate node called UserMaster where he loads

his own projects and manipulates the view, the Distributed Visualization

workflow will be almost the same, except that the RenderMaster needs to have

a ISubscriber interface published as well. The UserMaster access this interface

and sets to its local IPublisher which works in the exact same way as the one in

the RenderMaster. This extensible approach can work indefinitely for as many

separates nodes as we want, i.e., a node for picking objects, a node for receiving

input from trackers, and so on. Figure 6.3 shows how an ideal network with

fine grained collaboration and distributed visualization tasks spread across

multiple nodes.

6.4
Results

We show in this section how the implemented example system behaves

under local and distributed visualization. Our goal is to measure how much

impact the distribution and frame display checkpoint impacts the performance.

Therefore we registered the frame rates of the visualization while varying the



A non-intrusive solution for distributed visualization and collaboration in a visualizer 47

Group A B C D A, B A,B,C A,C,D A,B,C,D
Average FPS 430 416 220 216 356 199 195 191
FPS loss — — — — 14.4% 11.3% 11.5% 11.4%

Table 6.1: Frame rates and performance comparison of different cluster
configurations

number of nodes in the cluster and which nodes used. As mentioned before,

the example system has no multicast implemented, thus all the tests have

been executed with only unicast communication between the nodes. We used

4 nodes with similar configuration in our tests (Figure 6.4):

Our tests are consisted of the visualization of a dummy scene with

1300000 triangles with all culling disabled. This scene is just a collection of

triangles in a certain position, but emulates a typical scene in our application

usage scenario. During this visualization, we recorded the frames per second

while the camera followed a predefined path. We execute these tests for a series

of combination of nodes as shown in table.

In table 6.1, we show in the ”Average FPS“ row how many frames per

second each setup achieved and in the ”FPS loss“ row the loss of performance

of the given node group when compared to the performance of the worst

local node performance of the group. Notice that the first 4 scenarios are

of the nodes executing the tests locally. The results show that there is a

performance loss of less than 15% with networking due to latency of the

network in any of the cases. Moreover, considering that nodes C and D have

a similar performance locally and since a group performance limit is equal

the weakest node’s local performance, the comparison of performance between

groups A,B,C and A,B,C,D is important to show us the raw impact of adding

another node to a group, which is a negligible loss of less than 1%.

As can be seen, although the performance suffers an expected loss with

distribution, our system can easily provide interactive frame rates during the

visualization of large scenes in a distributed visualization scenario 6.1, which

is the usual desired cave disposition and our ultimate goal with the project.

We tested the system in the same 4 node scenario with a collaborative

scene following an arbiter topology. The tests successfully worked and there

had been no inconsistencies or noticeable performance hindrances as expected.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 48

Figure 6.4: Distributed visualization with 4 nodes of a typical scene in Siviep



7
Conclusion

In this work, we presented our design of an extensible and modular

visualizer as well as the design of a module that provides distributed

visualization and collaboration for the visualizer. By following these designs, we

implemented an example system and tested the synchronism of the distributed

visualization and the consistency of the collaboration among multiple nodes,

we also evaluated the impact on performance caused by the distributed

visualization.

We discussed first the relevant concepts and problems of designing and

implementing a real time immersive visualizer, from which we extracted our

main architectural requirements—modularity and extensibility. Following we

presented our design for the visualizer inspired by MVC architecture and

explained how we try to fulfill the aforementioned requirements. We continued

by presenting the design of the module responsible for distributed visualization

and collaboration, its interactions with the visualizer and why our described

design for the visualizer simplifies its implementation and usage. We concluded

with the implementation of such module, followed by the example visualizer

and its results.

We expected to indicate how our MVC-inspired design made possible the

development of a module that transparently provided distributed visualization

and collaboration to a visualizer. Also, how the design enabled the substitution

of parts of the system easily. E.g., the scene graph implementation can be

switched between a very efficient and licensed per station library for displaying

a scene in massive immersive environments and a cheaper licensed library for

common desktop usage. These reasons along with others explained in chapter

1 are what motivated this work as a solution for our real project. We try to

summarize here the key points that we believe we have addressed with our

design and can impact overall productivity of the development of real time

and efficiency-focused applications:

Complexity The separation of a system into modules with explicit interfaces

tend to isolate the low level details of implemented features and create

abstractions, which enhance the productivity of the business logic



A non-intrusive solution for distributed visualization and collaboration in a visualizer 50

development by reducing the complexity of the system. The isolation

of all the distribution code inside our designed module leverages the

productivity of the business and graphical developers in our visualizer.

Prototyping Designing a long development cycle for a product can be

extremely complex. Therefore, designing and implementing the system

iteratively can leverage productivity and also accommodate late changes

in product requirements. By making the application extensible, we

give the developers and easy way to prototype new functionality and

implementations. Our component based design enabled our system to be

distributed after its first version without any significant modifications to

it.

Flexibility The possibility of switching between different functionality with

no code change is important for a software that must assume different

roles depending on the scenario. Our MVC design allows our system to

have as many output and input endpoints for distribution of the business

data in our Distributed Shared Objects module.

Testability A modular system can have a loose coupling among its modules,

which makes easier to isolate a single module and test its provided

functionality with mock modules connected to it. We can test our

Distributed Shared Objects and Distributed Visualization submodules

locally by switching the RPC module under it for a local implementation

of it.

Maintainability All the items below makes the system easier to understand,

extend, test and switch parts. All of these greatly reduces the time to

understand a part of the system by the developers.

Our example system implementation showed that our design worked for

the expect scenario. The synchronism among multiple output displays was

achieved without any dedicated hardware and also without even the need to

use broadcast messages. A loss of less than 15% for a 4 node setup, which is our

common CAVE scenario has been a very good result, confirming our design as

a proper solution. Furthermore, the consistency among the scenes when using

the software collaboratively was achieved without any noticeable performance

hindrances.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 51

7.1
Future Work

Our distributed visualization strategy is not suitable for scenarios where

there is no single node in the cluster with a number of output displays that

creates a rendering bottleneck on it, which happens due to the amount of

graphical processing on it. However, if desired, the task of rendering can be

separated for the task of displaying. By creating this new layer of parallelism,

the rendering task can be distributed equally among the nodes independently

of the number of output displays connected to each one of them. However, it

becomes necessary to recompose the final image based on a given recompositing

strategy, which can adds complexity and inefficiency if not necessary.

The consistency among multiple stations when working collaboratively

is currently only designed for reliable environments without simultaneous

edition of the same entity. Therefore no special collision treatment of time

synchronizing strategy is currently needed. However, if the visualizer needs to

be deployed in a slow and non reliable network, with dynamic entity behavior,

simultaneous edition of the same entity, and so on, the distribution module can

be extended to support prediction algorithms, time synchronizing strategies

and dynamic behavior descriptions.

Although the RPC module supports broadcasting in its current version,

there is no service oriented abstraction for it. A node has to call in a

reflective way the methods on other nodes, making it complex and unintuitive.

Nevertheless, synchronous distributed visualization can be achieved with only

unicast with some performance loss. If necessary, for efficiency in N-to-N

communication, without breaking the component oriented paradigm, we intend

to add the support for Collective Interfaces [8] following the implementation

of [33], that use annotations [25] which are supported by Coral [1]. For ease

of use and configuration, we plan to implement the Lookup pattern [19] with

any node being able to assume on demand the role o service lookup directory.



Referências Bibliográficas

[1] Coral - lightweight c++ component framework. www.libcoral.

org.

[2] Java remote method invocation. http://www.oracle.com/

technetwork/java/javase/tech/index-jsp-138781.html.

[3] Microsoft .net remoting. http://msdn.microsoft.com/en-us/

library/72x4h507(v=vs.80).aspx.

[4] Openscenegraph. http://www.openscenegraph.org/.

[5] Opensg. www.opensg.org.

[6] Visualization library. http://www.visualizationlibrary.org//.

[7] Zeromq. www.zeromq.org.

[8] BAUDE, F.; CAROMEL, D.; HENRIO, L. ; MOREL, M.. Collective

interfaces for distributed components. In: CLUSTER COMPUTING

AND THE GRID, 2007. CCGRID 2007. SEVENTH IEEE INTERNATIONAL

SYMPOSIUM ON, p. 599–610, May.

[9] BIERBAUM, A.; JUST, C.; HARTLING, P.; MEINERT, K.; BAKER, A.

; CRUZ-NEIRA, C.. Vr juggler: a virtual platform for virtual

reality application development. In: VIRTUAL REALITY, 2001.

PROCEEDINGS. IEEE, p. 89–96, March.

[10] BOEHM, B.. Software Engineering Economics. Prentice Hall, 1991.

[11] BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P. ;

STAL, M.. Pattern-Oriented Software Architecture - A System

of Patterns. John Wiley and Sons, 1996.

[12] EILEMANN, S.; MAKHINYA, M. ; PAJAROLA, R.. Equalizer: A scalable

parallel rendering framework. IEEE Transactions on Visualization and

Computer Graphics, 15:436–452, 2009.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 53

[13] FERREIRA, A.. Uma arquitetura para a visualização distribúıda

de ambientes virtuais. Master’s thesis, PUC-Rio, 1999.

[14] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES, J.. Design Patterns

- Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995.

[15] HEINEMAN, G.; COUNCILL, W.. Component based software

engineering : putting the pieces together. Addison-Wesley, 2001.

[16] HUMPHREYS, G.; HOUSTON, M.; NG, R.; FRANK, R.; AHERN,

S.; KIRCHNER, P. D. ; KLOSOWSKI, J. T.. Chromium: a

stream-processing framework for interactive rendering on

clusters. ACM Trans. Graph., 21(3):693–702, July 2002.

[17] IERUSALIMSCHY, R.; DE FIGUEIREDO, L. H. ; CELES, W.. The

evolution of lua. In: PROCEEDINGS OF THE THIRD ACM SIGPLAN

CONFERENCE ON HISTORY OF PROGRAMMING LANGUAGES, HOPL

III, p. 2–1–2–26, New York, NY, USA, 2007. ACM.

[18] KELEHER, P. J.. Decentralized replicated-object protocols. In:

PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM SYMPOSIUM ON

PRINCIPLES OF DISTRIBUTED COMPUTING, PODC ’99, p. 143–151,

New York, NY, USA, 1999. ACM.

[19] KIRCHER, M.; JAIN, P.. Pattern-Oriented Software Architecture:

Patterns for Distributed Services and Component. John Wiley and

Sons, 2004.

[20] LIU, X.; JIANG, H. ; SOH, L.-K.. A distributed shared object model

based on a hierarchical consistency protocol for heterogeneous

clusters. In: CLUSTER COMPUTING AND THE GRID, 2004. CCGRID

2004. IEEE INTERNATIONAL SYMPOSIUM ON, p. 515–522, April.

[21] MAES, P.. Computational reflection. The Knowledge Engineering

Review, 3:1–19, 1988.

[22] MAKHINYA, M.; EILEMANN, S. ; PAJAROLA, R.. Fast compositing

for cluster-parallel rendering. In: PROCEEDINGS OF THE

10TH EUROGRAPHICS CONFERENCE ON PARALLEL GRAPHICS AND

VISUALIZATION, EG PGV’10, p. 111–120, Aire-la-Ville, Switzerland,

Switzerland, 2010. Eurographics Association.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 54

[23] MICROSOFT PATTERNS AND PRACTICES TEAM. Microsoft

Application Architecture Guide. Microsoft Press, 2009.

[24] OMG. The corba specification. Internet Draft. http://www.omg.org/

spec/CORBA/.

[25] SUN MICROSYSTEMS. Annotations. http://docs.oracle.com/

javase/1.5.0/docs/guide/language/annotations.html, 2011.

[26] VISUAL C++ TEAM. C++ and cloud computing.

[27] MILLS, D.. Simple network time protocol (sntp) version 4 for

ipv4, ipv6 and osi, 1996. Internet RFC 2030.

[28] MOLNAR, S.; COX, M.; ELLSWORTH, D. ; FUCHS, H.. A sorting

classification of parallel rendering. Computer Graphics and

Applications, IEEE, 14(4):23–32, 1994.

[29] PIMENTEL, M.; FUKS, H.. Sistemas Colaborativos.

Elsevier-Campus-SBC, 2011.

[30] ROEHL, B.. Some thoughts on behavior in vr systems, 1995.

University of Waterloo.

[31] ROY, P.. The road to distributed programming: From network

transparency to structured overlay networks and onward to self

management, 2006. invited talk at Universiteit Antwerpen,.

[32] ROY, P. V.. On the separation of concerns in distributed

programming: Application to distribution structure and fault

tolerance in mozart. In: IN INTERNATIONAL WORKSHOP ON

PARALLEL AND DISTRIBUTED COMPUTING FOR SYMBOLIC AND

IRREGULAR APPLICATIONS (PDSIA 99), TOHOKU, 1999.

[33] SILVEIRA, P.. Projeto e implementação de interfaces coletivas em

um middleware orientado a componentes de software. Master’s

thesis, PUC-Rio, 2011.

[34] SPEAKMAN, T.; CROWCROFT, J.; GEMMELL, J.; FARINACCI, D.;

LIN, S.; LESHCHINER, D.; LUBY, M.; MONTGOMERY, T.; RIZZO, L.;

TWEEDLY, A.; BHASKAR, N.; EDMONSTONE, R.; SUMANASEKERA,

R. ; VICISANO, L.. Pragmatic general multicast (pgm) reliable

transport protocol. Internet Draft, 1998. CISCO Systems.



A non-intrusive solution for distributed visualization and collaboration in a visualizer 55

[35] TAYLOR, R. N.; MEDVIDOVIC, N. ; DASHOFY, E. M.. Software

Architecture: Foundations, Theory, and Practice. Wiley Publishing,

2009.

[36] VINOSKI, S.. Where is middleware? Internet Computing, IEEE,

6(5):92–95, Sep/Oct.

[37] VOELTER, M.; KIRCHER, M. ; ZDUN, U.. Remoting Patterns. John

Wiley and Sons, 2004.


