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Abstract. This paper proposes a real-time (performance of at least 30 fps for 

full-HD video) Depth-Image-based Rendering (DIBR) approach for stereoscopic 

3DTV using OpenCL. Many stereoscopic 3DTV, multi-view, and Free-view-

point TV (FTV) technologies have been based on DIBR, aiming at saving band-

width, and to allow for user adaptation in the client-side. Unlike related work, 

this paper uses OpenCL for all the DIBR steps, including the re-projection in  

the virtual views (which is commonly performed using OpenGL, even when  

implemented in GPGPUs). The use of OpenCL-only can, in some cases, outper-

form the OpenGL z-testing performance. Two execution models have been  

implemented (per-line parallel, and per-pixel parallel) and tested against standard 

video-plus-depth test sequences to show the approach performance. 

Keywords: DIBR, OpenCL, GPGPU, Stereoscopic, 3DTV. 

1 Introduction 

3D video is often considered one of the major upcoming innovations in video tech-

nologies [1]. Compared to 2D-only videos, the 3D video bandwidth requirement is 

huge to the point that current broadcast and IP networks are not prepared for it. To 

reduce the amount of necessary data in 3D video transmission, a common approach is 

to use video-plus-depth representation [2] and Depth-Image-Based Rendering 

(DIBR) [3] at the client-side to generate additional views. Since DIBR has the poten-

tial to reduce the amount of transmitted data [2], it has been a key part of 3DTV [4] 

and free-viewpoint TV (FTV) [5] technologies. 

Nevertheless, DIBR has some drawbacks, such as producing unpleasant to see 

holes and ghost artifacts in the generated views. Such problems have attracted a lot of 

research in the past few years, aiming at filling the holes, and improving the quality of 

the generated views. Some approaches focus on pre-filtering the depth map, which 

can reduce the amount of produced holes, while others propose complex algorithms, 

based on in-painting [6] techniques. One of the main drawbacks of early DIBR im-

plementations is, however, that they are not focused on achieving real-time perfor-

mance. MPEG View Synthesis Reference Software (VSRS) [7], for instance, takes 

nearly one second to render one frame with 1024x768 resolution [8]. A promising 
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approach to achieve real-time performance for DIBR is its implementation using 

highly-parallel architectures, such as Graphical Processing Units (GPUs) [9]. By real-

time performance, we mean at least 30 frames per second for rendering a full-HD 

(1920x1080 pixels) video. 

Aiming at achieving real-time performance in the generation of a stereoscopic pair 

from original color and depth data, this paper proposes a DIBR implementation purely 

based on OpenCL [10]. OpenCL is chosen because of its portability and availability 

for PCs and mobile devices. Even though the current implementation has been tested 

only in off-the-shelf GPUs, because it uses OpenCL it can also conceptually run in 

other multicore processing units, such as CPUs, hybrids of CPUs and GPUs, etc. 

Some performance tests are presented in the paper showing that the implementation 

achieves real-time requirements. 

The remainder of the paper is organized as follows: Section 2 presents an overview 

of view synthesis based on DIBR. Section 3 discusses some related work. Section 4 

introduces the parallel DIBR approach in generating stereo pairs, and its implementa-

tion using OpenCL. Section 5 presents some evaluations of the proposed implementa-

tion. Finally, Section 6 is reserved for conclusions and future work. 

2 DIBR Overview 

Conceptually, view synthesis based on DIBR can be divided into three main steps: 

depth map preprocessing; 3D warping; and hole filling. 

In the depth map preprocessing step, depth map is pre-processed aiming at reduc-

ing the large number of dis-occlusions that are usually generated by the 3D warping 

(the second step). Moreover, depth-map preprocessing also helps in reducing the 

noise usually present in captured depth maps, decreasing the warping error. Depend-

ing on the used algorithm, depth map preprocessing is also able to reduce the compu-

tational complexity of the hole filling (third step). As an example, some work use 

Gaussian filters to pre-process the depth map to completely remove the holes generat-

ed by 3D warping, making the hole filling step unnecessary. Such approach, however, 

has some drawbacks, such as creating non-natural geometric distortions in the gener-

ated virtual views. Other proposed techniques include: asymmetric Gaussian filter, 

bilateral filter; and adaptive filters; which can be implemented using parallel architec-

tures through convolution approaches. Another alternative to improve DIBR perfor-

mance is to perform depth map pre-filtering at the sender-side to improve the DIBR 

performance. 

After depth map preprocessing, 3D warping is used to project the pixels of the re-

ference color image to the virtual image plane. Given a reference color image, the 

corresponding per-pixel depth map, and the camera parameters, DIBR warps the pix-

els of the reference texture image to the virtual image plane in two steps. First, it back 

projects the 2D pixels on the image plane to 3D points on the world’s coordinate 

system. Second, it re-projects each 3D point on the target image plane. A complete 

formulation of DIBR can be found in [3] and [7]. In this paper, however, we are main-

ly interested in the generation of the stereoscopic-pair from the original texture and 
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depth images, which is actually a simplification of the DIBR equation. Fig. 1 shows 

the virtual camera setups used in this paper DIBR approach. It follows a parallel cam-

era setup, which, unlike convergent camera setups, does not generate vertical disparity. 

 

 

Fig. 1. Camera setup for rendering stereoscopic views (virtual views) from a central color 

image and depth information [11] 

From Fig. 1, it is possible to derive that the pixels positions (xc, y), (xl, y), and  

(xr, y) of the original (Cc), the virtual left view (Cl), and the virtual right view (Cr) 

respectively, are related by: 

 

          (1) 

 

where: f is the focal length; tc is the baseline distance from the left virtual view (Cl) 

to the right virtual view (Cr); and h depends on the selected convergence distance (Zc), 

and is given by: 

 

          (2) 

 

When using gray images to represent depth information, each pixel value usually 

ranges from 0 to 255. The original depth distance must then be quantized in this 

range. Instead of a linear quantization, a common approach is to use a non-linear 

quantization that considers human factors and improves the perceived depth [12], 

such as: 

                        (3) 

where Z is the depth of the real scene; Zmin and Zmax denote the nearest distance and 

the furthest distance, respectively; and z is the gray-scale depth value of the depth 

image. 
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After the 3D warping step, the empty pixels in the target view (named holes and 

cracks) can be filled by using neighboring pixel information in the hole filling step. 

Hole filling for 3D video is a very active research area. Many techniques have been 

proposed, such as: nearest neighbor, simple interpolation, depth-aided interpolation, 

in-painting, and depth-aided in-painting. Some of them are suitable to be implemented 

in parallel architectures, such as the nearest neighbor, and the simple interpolation. 

However, more complex approaches, such as those based on in-painting tech-

niques [6], are not easily suitable for parallel or real-time implementations. 

Concerning the final visual quality, in-painting techniques usually perform better. 

Subjective tests comparing hole filling techniques have been carried out by Vázquez 

et al. [13] and Azzari et al. [14]. Vázquez et al. endorse that “hole filling using the 

background pixels rather than the foreground ones as the dis-occluded areas is more 

reasonable by the definition of dis-occlusion”. Based on this assumption our approach 

for hole filling takes into account the depth of neighbor pixels, in order to fill the 

holes, as it is detailed in Section 4. 

3 Related Work 

In DIBR approaches there is always a tradeoff between the quality of the produced 

images and the algorithm performance. Although DIBR approaches for 3DTV have 

been proposed since 2004 [3], the first implementations were not able to achieve real-

time performance for a full-HD video. 

More recently, there have been efforts, as this work, able to achieve real-time, or 

almost real-time performance for DIBR. A common employed technique has been the 

use of FPGAs (Field Programming Gate Array) [15] [16]. On the other hand, Lee et 

al. [17] presents a DIBR approach using GLSL (OpenGL Shading Language) for 

object rendering. In [18], Rogmans et al. report a complete system for real-time stereo 

correspondence, disparity estimation, refinements, and warping, also based on GLSL. 

Compared with the FPGAs approaches, the use of GPU is easier to program and more 

flexible, simplifying the test of different algorithms for the different steps of DIBR. 

With the advent of GPGPUs (General Programming GPUs) in the last years, there 

has been a growing interest in using such a higher-level APIs to implement DIBR. For 

instance, Shin et al. [19], Shin and Ho [20], Rogmans et al. [21], Wang et al. [22], Xu 

et al. [23], Do et al. [24], and Zheng et al. [25] use CUDA for depth-preprocessing 

and for back-projection of pixels onto the 3D world. For the re-projection of the pixel 

on the virtual view, they usually use OpenGL. This can be mainly explained because 

when using OpenGL re-implementing z-testing is not needed. Similar to these works, 

this paper also recognizes the importance of using GPGPU to achieve real-time per-

formance for DIBR. We have implemented DIBR using OpenCL (a non-proprietary 

alternative to CUDA). However, unlike the aforementioned work, and motivated by 

the work of Gunther et al. [26] (in which it is shown an approach to outperform the 

OpenGL performance purely using OpenCL) we have implemented all the DIBR 

steps using OpenCL, as detailed in the next section. 
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4 DIBR Implementation Using OpenCL 

In general, depth map preprocessing and 3D warping are pixel-based, and have the 

potential to be implemented in parallel architectures. On the other hand, hole filling 

algorithms, mainly the ones based on in-painting techniques, are computing intensive 

tasks, which make them, up to now, impractical for real-time applications. As a con-

sequence, simpler hole filling strategies are used to allow real-time performance. In 

special, simpler hole filling approaches can be used in the generation of a stereoscopic 

pair, since the holes in virtual views are usually not large, preserving good quality 

virtual views. 

Fig. 2 shows our DIBR approach using OpenCL. The texture and the depth frame 

are first decoded by the CPU. A table with the horizontal movement for each possible 

depth is also pre-calculated by the CPU. Then, the decoded frames and the pre-

calculated horizontal movements are sent to the GPU, where the DIBR process be-

gins. The GPU DIBR implementation is based on two OpenCL kernels, related to the 

common DIBR steps previously mentioned: 3D warping and hole filling. We assume 

that the depth map does not need to be pre-processed in the client-side, since this task 

can be performed in the sender-side. 

 

 

Fig. 2. DIBR Implementation using OpenCL. 

4.1 Pre-calculating Horizontal Movements 

In the first step of the DIBR approach, the final horizontal movement of each possible 

depth [0, 255] is pre-calculated, which allows for avoiding redundant calculation and 

for improving the performance of the 3D warping kernel, similarly to the look-up 

table approach of [11]. As shown in formulas (1) and (2), the horizontal movement 

depends only on the camera parameters, and should be updated only when such para-

meters changes (e.g., following user preferences). The amount of horizontal move-

ment is calculated as follows: 
 

         (4) 
 

This step could also be calculated by the GPU, but as the table contains 255 values 

and should be updated only when camera parameters (or user preferences) change, its 

implementation by the CPU does not incur in much overhead. These pre-calculated 

horizontal values are sent, together with the color frame and the depth frame, to the 

3D warping kernel. The amount of horizontal movement table is also sent to the GPU 

as constant memory, which allows further optimizations. 
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4.2 3D Warping in Parallel 

The 3D warping kernel receives the original view color frame, the depth frame, and the 

pre-calculated depth-to-horizontal movement table, and shifts the pixels, for left- and 

right-views, according to the horizontal movement table. The 3D warping kernel out-

put is the virtual left- and right-views. One of the main problems of the warping algo-

rithm is that multiple pixels can be mapped to the same final virtual view position. 

When this happens, it should be assured that only the pixel closest to the viewer will 

get drawn on the final virtual view. Therefore, the central problem to calculate the final 

pixel positions in DIBR parallel implementations is to ensure a thread-safe depth test. 

As a special case of DIBR, in parallel camera setups such as the one of Fig. 1, the 

pixels will only shift horizontally, and, as consequence, only pixels that are in the 

same line can be mapped to the same final position. Thus, one way to avoid thread-

safe depth test is to parallelize only the computation of entire lines. This means that 

each kernel thread execution must be responsible to calculate all the pixels of a same 

line of a frame. This approach, which we call the per-line parallel, has been imple-

mented and tested against the more general per-pixel parallel kernel execution. 

In the per-pixel parallel model, the 3D warping kernel runs for each pixel. Each 

kernel thread execution is responsible to warp a pixel to its final position. In this ap-

proach, the aforementioned concurrency problems (see Fig. 3) can happen. Thus, to 

ensure a thread-safe depth test, we have used a global depth buffer, shared over all 

computing units of the GPU; i.e., a buffer that is in the OpenCL global memory.  
If the kernel only had access and render the depth buffer, atomic operations, using 

atomic_min OpenCL function, would be enough to guarantee thread-safe access. 
However, after depth-testing, the access to the color buffer is also needed. Since there 
is no built-in function in OpenCL to guarantee such a thread-safe access to more than 
one memory position, we have implemented a semaphore-like synchronization me-
chanism, and have added an additional lock buffer to inform if a certain pixel position 
is locked or not. Before reading or writing to depth or color buffers, the 3D warping 
kernel must first acquire lock of the corresponding pixel position. We use atom-
ic_cmpxchg operation to implement such lock feature. 

 

 
Fig. 3. Example of warping multiple pixels to the same target position without a thread-safe 

access to the depth buffer (the frame is shown without hole filling)1 

                                                           
1 Image created using video sequence available from Triaxes (http://www.triaxes.com). 
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4.3 Hole Filling in Parallel 

The last OpenCL kernel, the hole filling, is responsible for filling the holes that appear 

after 3D warping. As previously mentioned, due to the real-time execution require-

ment, it is not possible to use costly in-painting-based approaches. Therefore, a simp-

ler heuristic is used. 

Our implementation searches for colored pixels in the hole neighborhood but that 

are in the same line of the hole. It then selects the ones with lowest depth values, i.e., 

the background pixels, and fills the hole with a weighted average of the neighborhood 

pixels. The weight is based on the distance from the pixel to the hole. This approach 

takes into account that pixels belonging to the background are probably the most 

correct ones to fill dis-occlusion holes. Fig. 4 shows an example of a frame before and 

after hole filling kernel execution. 

 

 

Fig. 4. Example of a frame before (left) and after (right) hole filling kernel execution 

5 Evaluation 

In order to test our proposal, we have run it for two video-plus-depth test sequences 

provided by Poznan University [27]. Table 1 shows the results of the execution on a 

laptop computer with a Core i7 CPU, 8 GB of RAM, and an Nvidia GeForce GT 

740M GPU. For comparison purposes, the table shows the average frame per-second 

achieved by the per-line parallel kernel execution, and the per-pixel parallel kernel 

execution, discussed in the previous section. The stages that are taken into account to 

calculate Table 1 results are: computation of the horizontal movement table (when 

necessary); sending frames to GPU; 3D warping; hole filling; and frame display. 

Decoding is not taken into account. The global work-group size for each test is the 

size of the final images, while the local work group sizes are 9 and 16x9 for the per-

line and per-pixel kernel execution models, respectively. 

As can be noted in Table 1, the DIBR using OpenCL reaches real-time perfor-

mance for full-HD video, and almost real-time performance for stereoscopic full-HD 

(2x horizontal resolution of full-HD), when running in the per-pixel parallel execution 

kernel. The per-line parallel execution kernel has the advantage of not explicitly  

requiring concurrent synchronization mechanisms. However, runs slower than the 

per-pixel parallel execution kernel. A possible explanation for the slower performance 
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of the per-line parallel execution kernel is that the higher granularity of the data parti-

tion fails to fully exploit the parallel capabilities of the GPU configuration. 

Table 1. Performance of the two implemented DIBR approaches (per-line parallel and per-pixel 

parallel) using OpenCL 

Test Sequence Size Per-line parallel (fps) Per-pixel parallel (fps) 

Poznan_Street 

1280x720 (HD) 40.6 83.4 

2560x720 (Stereo HD) 19.3 45.4 

1920x1080 (Full-HD) 17.7 39.8 

3840x1080 (Stereo Full-HD) 8.6 21.1 

Poznan_Hall2 

1280x720 (HD) 41.6 89.5 

2560x720 (Stereo HD) 19.9 48.6 

1920x1080 (Full-HD) 18.1 42.7 

3840x1080 (Stereo Full-HD) 8.7 22.3 

6 Conclusions 

This paper proposes a DIBR implementation using OpenCL aiming at achieving real-

time performance for full-HD stereoscopic video. Unlike previous related work, our 

DIBR approach relies completely on OpenCL. Two approaches – one based on a per-

line parallel kernel execution avoiding concurrency problems, and another based on a 

per-pixel parallel execution, which requires the explicit use of OpenCL synchroniza-

tion mechanisms – have been implemented and tested in off-the-self GPUs. Tests with 

standard video-plus-depth sequences show that with the per-pixel parallel approach it 

is possible to achieve a performance of 40 fps for full-HD videos; a performance 

better than real-time rates (30 fps). In contrast, the per-line parallel approach achieves 

performance of approximately 18 fps. These results are similar to other approaches 

that do not rely completely in GPGPU language, but use OpenGL for the re-

projection step. 

Future work include the use of GPU to decode color and depth frames, the support 

to multiview-plus-depth, and the use of arbitrary (possibly with movement) camera 

configurations. When using arbitrary camera configurations, mainly the ones with 

wide baseline, more advanced hole filling approaches, possibly based on in-painting 

techniques, will be necessary. As a consequence, how to efficiently map such algo-

rithms, which are not easily parallelizable, to the GPGPU must also to be handled. 
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