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Abstract—Automatic polyp detection systems are an important
tools to aid in the diagnosis and prevention of colorectal cancer.
Currently, methods based on deep learning approaches have
presented promising results. However, the performance of these
techniques is highly associated with the use of large and varied
data samples for training. This is one of the main limitations
of applying Deep Learning techniques in the medical field since
the amount of data for training is generally limited compared
to nonmedical disciplines. This work proposes a novel method
to increase the quantity and variability of training images
from a publicly available colonoscopy dataset. The developed
approach enrich the training data adding polyps to regions of
nonpolypoid samples, creating automatically new data with their
appropriate labels. Performance results show that convolutional
neural networks trained in these syntactically-enhanced datasets
improved the accuracy on polyps segmentation task while
reducing the false positive rate. These results open new
possibilities for advancing the study and implementation of new
methods to automatically increase the number of samples in
datasets for computer-assisted medical image analysis.

Index Terms—Colonoscopy, Polyp Detection, Augmentation,
Training Data, Segmentation, Convolutional Neural Networks

I. INTRODUCTION

The second leading cause of death from cancer originates

from cancer of the colon [19]. The mortality rate in the United

States has declined in recent decades. One of the probable

reasons is the increase in the accomplishment of colonoscopy

examinations in this period [21]. This demonstrates that the

colonoscopy technique, which allows visualization of the

elements present in the inner part of the colon, is primordial

for the prevention of this type of cancer. In general, in these

cases, tissue growth of the colon mucosa occurs forming a

polyp. An undetected polyp may become lethal over time,

which highlights the importance of early-stage polyp detection

for the prevention of such disease.

Currently the colonoscopy exam represents the standard

procedure for inspecting the colon for polyps and other lesions.

However, colonoscopy is an operator-dependent procedure

[4]. This means that the number of polyps found may

vary depending on factors such as fatigue and professional

experience. Some polyps are difficult to detect, even for

highly trained physicians. Medical studies estimate that a

rate of missed polyps by the physicians is about 25% [5].

Computer-aided polyp detection systems may reduce the

rate of polyps missed during colonoscopy examination [4].

Initially, studies that presented methods for polyps detection

were based on the appearance of the edges of these lesions and

curvature analysis [10] [8]. Several approaches to detecting

polyps can be found in the literature [2], [23], [24], [27],

however, recent works [14], [17], [26] have evidenced Deep

Convolutional Neural Network (CNN) as a technique for

lesions detection with higher accuracy. Nevertheless, the

efficiency of these techniques is directly associated with the

quantity and variety of the colonoscopy images in the training

data.

In the medical context, large datasets are difficult to obtain

due to the high cost of skilled labor and privacy restrictions

[6]. Large data are the exclusive of a few research groups,

impacting the scientific production of those who do not

have access to this information. An example of a publicly

available dataset is the CVC-ClinicDB [2], which consists of

612 images extracted from colonoscopy videos. However, this

number of images may be insufficient for training successfully

a deep neural network. Another limitation founded in the

CVC-ClinicDB dataset is that it presents several images for

the same polyp, varying only its point of view. This shows

the reduced variation of the colonoscopy images. Ideally,

a suitable training data should be composed of a large

number of images that present different sizes and polyps

morphologies from different patients. These images must

additionally contain a set of specific labels to successfully

apply machine learning algorithms, such as bounding boxes

for object detection or paired images with label pixels for

semantic segmentation tasks.

The larger and more varied the dataset, the better the

training and performance of systems that use machine learning

approaches. Based on this observation, and the difficulty of

obtaining datasets of suitable colonoscopy images, the present

work proposes a novel method to increase the variation of

polyps in colonoscopy images, improving detection accuracy

in deep learning based systems. Specifically, we insert polyps

from the CVC-ClinicDB database into samples with regions

without polyps. Thus, the polyps variability in the images and

the sample quantity were increased. To asses the effectiveness

of our approach, we used a U-net [16] neural network to

perform segmentation and detection tasks. We compare the

performance results between training the neural network with

the original data, a traditional data-augmentation approach

and our synthetically enhanced dataset. The respective labels

were produced according to the shape and location of each
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new inserted polyp. Results showed the effectiveness of our

approach, improving the accuracy on polyps segmentation

task and reducing the false positive detections. The remainder

of this paper is organized as follows. Section II presents

the literature review. Section III details the method and the

steps for extracting, inserting new samples, and producing its

labels. Section IV presents the experiments and results, and

Section V offers some concluding remarks and future research

perspectives.

II. RELATED WORK

In recent years many efforts have been made to develop

automatic methods for polyps detection. However, with the

advancement of the deep learning techniques for image

processing and computer vision, there was a motivation for the

adoption of these approaches in Computer-Aided Diagnosis

(CAD) systems. Shin et al. [17] presented a polyp detection

system based on CNN models. That approach introduced

augmentation strategies such as rotation, brightening, shearing,

blurring and zooming to increase the number of training

samples. Shin et al. made use of transfer learning of a

pre-trained Inception Resnet model, using a large image

dataset named COCO (Common Objects in Context) [11].

In the case of colonoscopy images, the study of Shin

et al. used the CVC-ClinicDB database for training and

ETIS-LaribPolypDB [20] for the testing. They also used

transfer learning and data augmentations techniques to

improve detection results because of the low quantity and

variability on the training data. Billah et al. [4] stated

that system performance is dependent on the training data.

These authors used several publicly available datasets [3]

(CVC-ClinicDB, ETIS-LaribPolypDB, and ASU-Mayo [25])

and combined with their own dataset. The author’s effort to

form a more varied dataset confirms that there is a need

for improvement on availability, quantity, and variability of

colonoscopy images for machine learning approaches.

Despite advances in polyp detection systems that use deep

learning techniques, little was done in relation to the datasets

in the sense of contribution in the variation of the samples. It is

important to remember that in the context of medical imaging,

labeling the location of each lesion must be performed by

clinical experts, which is a time-consuming and costly process.

The potential benefit of deep learning applications is hampered

by the lack of availability of image datasets properly recorded

(labels) in quantities and variability to meet the requirements

of detection applications for clinical use. Magnetic Resonance

Imaging (MRI) initiatives were applied focusing on data

augmentation and physician training [7]. In that study, a real

brain MRI dataset is used as a source for the generation of

new synthetic images, contributing to improve precision in

diagnoses tasks.

In the context of colonoscopy images, Shin et al. [18]

propose a method to add more colonoscopy images to

the original CVC-ClinicDB dataset. This effort goes toward

improving training processes by allowing the use of additional

data. In that study, the authors used a Faster R-CNN network

to test the effectiveness of a polyp detection task. The

network trained on the original dataset, obtain precision

metric of 59.3% and recall metric of 48% in the testing

stage. In a second moment, the same network was trained

on a combined dataset (original + generated), improving

the performance metrics to 69.4% and 67.4%, for precision

and recall respectively. The improvement in detection results

demonstrates the relevance of increase and variate the samples

in a dataset of colonoscopy images. These augmentation

process can contribute to the better training of computer-aided

systems based on deep learning techniques.

In this study, we aim to evaluate a strategy that inserts

polyps in a dataset to create new samples and to compare

the effect of the U-net based polyp detection over traditional

data augmentations techniques.

III. METHOD

In this section, we present the steps of the polyps insertion

process in new images. These images will be part of a new

dataset composed of the original dataset complemented with

the insertion of other polyps, increasing the number of samples

and data variability for a deep learning solution.

A. Overview

Our proposed method is to increase the data variability by

creating new samples inserting polyps on nonpolypoid images.

We create an automatic execution of tasks that result in a

richer dataset to be used for training a segmentation CNN.

Figure 1 shows the described process. In Figure 1 (a) the polyp

highlighted by the green square is copied from a source image

belonging to the original dataset. Then is applied to another

image (Figure 1 (d)) from the same dataset. This process form

different images with richer variability.

The first step of the method is to verify (in the entire

dataset) which polyps are appropriate for image extraction.

We consider the k − th smallest polyps in the dataset, where

the size is counted by the number of pixels. Therefore, this

step determines a list of polyps that meet a size criteria. This

criterion could be based on the types of lesions according to

the Paris Classification [1]. However, there is no information

in the CVC-ClinicDB dataset corresponding to the types of

polyps presented in the images. Then a bounding box around

the polyp region is obtained. Here, bounding box coordinates

are used to obtain a copy of the exact region in which the

polyp is present on the original image. Then, this region is

duplicated to latter be added on a different target image.

The next step determines in which region in the target

image the polyp will be added. A set of regions of

interest are selected according to the output of the watershed

transformation [12] on the target image. The region selected to

receive the polyp should be the largest number of pixels that is

not positioned on another existing polyp. If any region meets

this criteria, then the rest are excluded at this stage. At this

point, the region that will receive the polyp is already defined

and the copy of the polyp obtained earlier is applied within

this region. The output image is then obtained by composing
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an image from the original dataset with the new lesion added.

We explain in detail these steps on the following subsection.

B. Polyp Insertion Process

Source Image Steps: In colonoscopy images it is common

to see several types and sizes of polyps. However, the

perception of lesion size in the images may be affected by

the camera’s view. If the camera is closer to the mucosa, the

polyp may appear larger than it actually is, or if its far its

possible to miss the lesion detection. In this study, the polyp

size is defined according to the size of the area it occupies in

pixels. In the CVC-ClinicDB dataset a same polyp appears in

more than one image. Thus, the proposed method will consider

the size of this polyp in each image separately, even if it is the

same lesion. The image of the dataset containing the position

of the polyp in the image is called the ground truth image

(i.e. the binary polyp mask annotated by physicians). In that

picture, the number of blank pixels in determine the size of

the polyp.

We perform a check size for each ground truth image,

where k − th minor polyps are selected. In order to insert

these polyps in regions of another image, it is appropriate

use the smaller polyps, since these lesion can be inserted

within regions returned by the watershed process. The main

idea is to insert the polyp whose size is smaller than the

selected watershed region. As the watershed region tends to

be the homogeneous area of the image, the polyp insertion is

compatible in size with the target region.

Fig. 1. An illustration of the polyp selection and insertion process. (a)
Respective source image polyp bounding box. (b) Polyp selection bounding
box in ground truth image. (c) Duplicated polyp sub-image. (d) Polyp applied
to the selected watershed region. (e) The ground truth created for the added
polyp.

After select the smallest polyps, the smallest bounding box

capable of accommodate the polyp area is defined by means

of the ground truth image, as seen in Figure 1 (b). With the

size and position information of the bounding box defined it is

possible to extract the polyp in the corresponding colonoscopy

image. Figure 1 (c) show the polyp duplication area in the

source image (Figure 1 (a)) that belongs to the original dataset.

Target Image Steps: once the polyp is ready to be added

into the target image we must decide on which region of the

image it will be positioned. This choice of the best region is

important because it helps to maintain consistency, preventing

impairing appearance and keeping similar as possible to the

real colonoscopy images. We based the region choice on the

watershed strategy for target image segmentation. Figure 2

represents the steps of this process, where the target image

in Figure 2 (A) is used as the basis for finding a set of

regions illustrated in Figure 2 (J). The polyp will be added

in one of these regions, if any is compatible with the polyp

to be inserted. In case of incompatibility, this target image is

discarded and a new one is selected within the original dataset.

Fig. 2. Flow chart of the generation procedure of target image watershed
region.

The generation process is initiated by the creation of a gray

scale version of the target image. After this, the equalization

process is applied to increase contrast and limit noise in

homogeneous areas [15], resulting in the CLAHE image as

seen in Figure 2 (C). The CLAHE image is used as the

basis for the creation of three versions: a binary image, a

maxima operator and complement (Figure 2 (D), (F) e (G)

respectively). The binary image is used as the basis for the

creation of a modified version of the binary image described

in Figure 2 (E) as a binary image white background. This latter

one is an image where corresponding black background areas

in the Figure 2 (D), are surrounded by blank areas and then

filled to form a homogeneous area.

In Figure 2 (E), we inverted the background from black to

white and the foreground from white to black. Figure 2 (F) was

also obtained from Figure 2 (C) where the groups of pixels

identified with high intensity in relation to surrounding pixels

[22]. The Figure 2 (G) is the complement of the Figure 2 (C)

(dark areas become lighter and light areas become darker).

This is useful for applying the watershed transform, which

identifies clear points in further processing. Figure 2 (H) is a

combination composed by the Figure 2 (E), (F) and (G). The

image in Figure 2 (H) is modified from a logic operation OR
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from the pixel values of the images Figure 2 (E) and Figure 2

(F). The intensity values in Figure 2 (G) are forced to become

local minimums wherever the corresponding values resulting

from logic operation OR with Figure 2 (E), Figure 2 (F) are

non-zero. Thus, we obtain image in Figure 2 (H) as the input

to the watershed algorithm, which is able to recognize regions

according to the level of intensity. The watershed process

returns regions found in the Figure 2 (I), then converted to

a binary version where the regions are light areas from the

Figure 2 (J). Finally, the polyp is positioned in one of regions

on the Figure 2 (J).

Once the regions are returned by the watershed process in

the target image, now is necessary choose in which region the

polyp will be added. For this, a region size check is performed

in terms of the number of pixels. Then, the largest region is

selected as a candidate. This region will only receive the polyp

if its area is not on a polyp that is already present in the target

image. The watershed selection process finishes when the new

polyp is positioned over the largest watershed region and no

area is over the polyp that was already present in the target

image. In this process, there may be cases where there are no

compatible areas in the target image for polyp insertion. In

that case, the image is discarded and a new sample from the

original dataset is chosen as target image.

Finally, after the selection of a compatible watershed region,

the area containing the polyp (Figure 1 (c)) is inserted into the

target image (Figure 1 (d)). However, there are texture and

lighting differences between the source image and the target

image. This problem is minimized using the Poisson technique

[13]. This approach allows polyp insertion despite the presence

of complex structures or contours in new backgrounds (target

image). The Poisson approach eliminates the need to delineate

the polyp borders with high precision. It is interesting to use

a bounding box so that regions close to the polyp in the

source image are also obtained with the aim of favoring the

smoothing of texture, lighting and color in the target image.

This smoothing strategy aims to make the target image visually

coherent, so it is not noticeable that a polyp belonging to a

source image has been inserted. In addition, this method create

automatically the ground truth image required by the deep

learning algorithm.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the training and evaluation

procedures. We compare the performance results between

training the neural network with the original data, a traditional

data-augmentation approach and our synthetically enhanced

dataset.

A. Training and Testing Datasets

We use the 612 images from CVC-ClinicDB dataset to

constitute training sets A and B, and also testing set A as

shown in Table I. The ETIS-LaribPolypDB dataset contains

196 images and was used only for evaluation (testing set B in

Table I). We propose two training datasets (i.e. training set C

and D in Table I) in which polyps were inserted according to

the process described in Section III. Therefore two polyps were

inserted in the original CVC-ClinicDB dataset to form the

training set C with 1071 images. The training set D was built

following the same methodology, but seven polyps were added,

resulting in 3823 images. Among the images that constitute

the CVC-ClinicDB dataset, we selected one hundred images

such that three or four images represent each polyp in the

CVC-ClinicDB dataset. Thus, the 612 images were split into

the training set A and testing set A (Table I). We perform

the data augmentation strategies in the training set A and B

to increase the number of training samples. For preprocessing,

the resolution of all the images was reduced to 256x256 pixels.

TABLE I
SUMMARY OF THE TRAINING AND TESTING DATASETS.

Set Name Dataset Used Num. of Images
Train. Set A CVC-ClinicDB 512
Train. Set B CVC-ClinicDB 612

Train. Set C
CVC-ClinicDB +

Two Polyps Added 1071

Train. Set D
CVC-ClinicDB +

Seven Polyps Added 3823

Test. Set A CVC-ClinicDB 100
Test. Set B ETIS-LaribPolypDB 196

B. Evaluation Metrics and Experiments Setup

Table I list the evaluation metrics used to asses the training

performance. We measure for each experiment the accuracy,

precision, recall (sensitivity), specificity and F1 score. A

description of these metrics can be found in [3]. Additionally,

we include the false positive rate (FPR) metric to quantify how

much the detected polyp location falls outside the ground truth.

Our polyp segmentation approach is based on the U-net

architecture. Their output is a a binary segmentation map

that provides the predicted polyp location for each input

image. In the training stage, we used an Adam optimizer

[9] with learning rate of 0.0001 and batch size equal to 4.

We apply augmentation that comprises the transformations of

rotate (40 degrees), zoom, shift horizontally and vertically

(20%), and horizontal flip. We also use early stopping to

stops the execution of the training process when there is no

improvement in ten consecutive epochs. The experiments were

carried out on Windows 10 operating system using a standard

PC with a 2.80GHz Intel (R) Core (TM) i7-7700HQ CPU,

16GB of RAM and a NVidia GeForce GTX 1060 GPU 6GB.

C. Detection Results

We investigate the effect of our training sets C and D

(i.e. with polyps inserted) in comparison with augmented

versions of the training set A and B. The Table II depicts the

performance evaluation results for the test performed in the

CVC-ClinicDB dataset (testing set A). We can observe that

the performance against almost all metrics is similar between

the augmented training set A and the proposed training set C,

except for FPR which was reduced to 0.005 with the use of

this proposed dataset.

195



The results listed in Table III shows the comparison of

the augmented training set and our proposed training set in

the context of testing set B (ETIS-LaribPolypDB). In the

comparison between training set B (augmented) and training

set C (proposed), we note that an improvement of 12.5%

for the accuracy and recall, 13.1% for specificity, 9.5% for

F1-Score and FPR was reduced to 0.0292. We also observed

the evaluation among the training set B (augmented) with

3825 images and training set D (proposed) with 3823 images

(See Table III). Note that there are improvements in terms

of accuracy and recall of 21.7%, specificity of 23.9% and

F1-Score 14%, with reduction of FPR to 0.079 by considering

our proposed training set D. The values obtained using the

training set D (proposed) were higher in all metrics except

precision that maintained a value close to that presented by

training set B (augmented). The results show that our method

is promising and superior in this evaluation than the ones that

use traditional data augmentations techniques.

TABLE II
PERFORMANCE OF THE TRAINING DATASETS ON THE TESTING DATASET A

(CVC-CLINICDB).

Training Set Acc Prec Rec Spec F1 FPR

Train. Set A
(Original) - 512
images

0.959 0.958 0.959 0.979 0.958 0.020

Train. Set A
(Augmented) -
1152 images

0.962 0.961 0.962 0.981 0.961 0.018

Train. Set C
(Proposed) -
1071 images

0.985 0.985 0.985 0.994 0.985 0.005

TABLE III
PERFORMANCE OF THE TRAINING DATASETS ON THE TESTING DATASET B

(ETIS-LARIBPOLYPDB).

Training Set Acc Prec Rec Spec F1 FPR

Train. Set B
(Original) - 612
images

0.569 0.929 0.569 0.566 0.688 0.433

Train. Set B
(Augmented) -
1071 images

0.581 0.934 0.581 0.576 0.697 0.423

Train. Set C
(Proposed) -
1071 images

0.706 0.939 0.706 0.707 0.792 0.292

Train. Set B
(Augmented) -
3825 images

0.681 0.939 0.681 0.681 0.774 0.318

Train. Set D
(Proposed) -
3823 images

0.898 0.936 0.898 0.920 0.914 0.079

To see the difference clearly between the training sets

proposed and augmented datasets Figure 3 depicts a

comparison among the precision and recall found after testing

using ETIS-LaribDB dataset. The number of images was

adjusted to allow comparison of the training datasets with

a similar amount of images. The obtained results compared

to use of original training set B only, show improved

performances in recall considering to training set C(proposed)

and training set D(proposed). Specifically, the use of 3823

inserted polyp images (Training set D proposed) shows 21.7%

of recall improvements compared to the use of augmented

training set B with 3825 images. Overall, on the training

set D, we can see considerable improvement for recall

while maintaining compatible values of precision. The same

comparison for the tests on the CVC-ClinicDB dataset with

100 images (testing set A, Table I) presented close values for

both precision and recall for different training datasets as seen

in Table II.

Fig. 3. The comparison from precision and recall values from testing set B
results (ETIS-LaribPolypDB dataset).

The tests results (Table II and III) have shown to be

effective in reducing false alarms. More specifically, in

Table II, the lower values for FPR results were obtained

because the original training set was modified by the polyp

insertion process. We noticed that the FPR results (Table

III) tend to be more consistent because we use the images

from CVC-ClinicDB exclusively for the training and the

ETIS-LaribPolypDB for testing. In the case of the tests on the

ETIS-LaribPolypDB dataset (testing set B), FPR values also

had a important reduction as presented in Figure 4. Results

show how the use of the enhanced training set D (proposed)

lead to a significant performance improvements.

The results showed that there is a significant reduction in the

FPR. This means that the polyp insertion process contribute to

the network learning regards the hard mimics, such as specular

highlights, fecal content, and bubbles.

V. CONCLUSION

In this paper, we propose a method for automatic polyp

insertions in colonoscopy images for enriching the training

dataset and to improve the performance of convolutional neural

network approaches in the polyp detection tasks. We evaluated

our method with a training set of CVC-ClinicDB database and

ETIS-LaribPolypDB testing set. The proposed method results
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Fig. 4. The False Positive Rate values from Testing set B
(ETIS-LaribPolypDB).

show that our polyp insertion process is effective to reduce

false positives and can be a useful alternative to traditional

data augmentation. The evaluation performed show a low FPR

while maintaining a substantial recall/sensitivity. We achieve

91.4% of F1-Score and 0.079 of False Positive Rate with our

modified training set over the ETIS-LaribPolypDB testing set.

Additionally, it has the potential to increase the variability

and number of samples in a reduced polyps dataset like

CVC-ClinicDB. For future work, we plan create new polyps

of varied shapes, sizes, and texture by means of a learning

process considering all the polyps of the dataset.
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