
Rodrigo Marques Almeida da SilvaRodrigo Marques Almeida da Silva

Index

• Terrain Rendering
– GeoClipmap

– Tiled GeoClipMap
• Cracks Resolution

• Load Management
– Local Load Balance

• Streaming Core (HD � Memory � GPU Memory)

• Dynamic Tile Substitution

Asyncron File Loading Core• Asyncron File Loading Core

• OGL Render Thread Issues
– Thread Safe Solution

• Cloud
– Cloud Tile Streaming

• Server Load Balancing

• Caching System

– Cloud Manager
• Monitoring

• Adaptive Server Wakeup

• Test and Results

• Conclusion and Future Works

• Bibliography

Terrain Rendering

• HeightMap Based

• Full GPU Solution

• GeoClipMap
– Texture Pyramid

– Only 4 Mesh Patch
• Low Memory Footprint• Low Memory Footprint

• High Complexity for Rendering
– A lot context changes

– Compressed Texture
• 85% of render time used to

decompress texture

– Pre-Processing Crack
Resolution

– Adaptive LoD

– Fixed Tile Level of Detail

(Asirvatham& Hoppe, 2005)

Tiled GeoClipMap

• Hybrid Solution
– Use CPU for Memory

Management and Culling

– Use GPU for Rendering
• Mesh, Texture

– Dynamic Tile Level of– Dynamic Tile Level of
Detail

• For each tile in the
frustum
– Select the best resolution

based on the distance (the
tile variance can be used
also)

– Render the Tile

– Solve Cracks

Tiled GeoClipMap

• Pyramid Texture
– MipMap

• Pyramid Mesh
– Power of 2 Mesh

• Static Meshes

• Render Sequence• Render Sequence
– Run Culling

• Run Frustum Culling (Fast)

– Run Selector
• Select the best level for the

tile

– Run Sorting
• Same Level order by count

desc

• Simple Quicksort

– Render

Tiled GeoClipMap

• Cracks
– At a LoD Gap between 2

tiles

– The tile with the major
LoD must morph its edges
to fit the another tile
edges.
to fit the another tile
edges.

– Used as a vertex shader

– We can use Geometry
Shaders to improve the
LoD of the minor to the
major

– Work only with 1 level of
difference

Load Management

• Out of Core Terrains

– Local Management

• 3 Level Hierarchy

– HD� Memory� GPU

– Network– Network

• Communication

• Server File Management

• Streaming

• Protocol Restrictions

• Latency

Load Management

• Dynamic Tile Substitution
– Aging (GPU � RAM)

• A cache has a hit counter
– Increase/Decrease based on

the render status

– Deadline (RAM � HD)

– Windows Performance
Counters

Processor/% Processor Time/_Total

Memory/

Available Bytes

Cache Faults

Page Faults

LogicalDisk/

% Disk Read Time

% Disk Write Time

RAM

Memory

RAM

Memory

Tile 01

Tile 02

GPU

Memory

GPU

Memory
Counters

• If the CPU is Full, unload tiles.

– OGL / NVidia GPU Memory
Parameters

• Asynchronous Load
– IOCP

• Creates a Thread To Handle Each
Tile Block Load

• Tile Load Prediction
– Interpolated Camera Move

• Refresh New Tiles

• Time Factor

% Disk Write Time

% Free Space

% Idle Time

System

Process

Threads

MemoryMemory

Tile 01

Tile 02

Load Management

• Store File Format
– Splitted Tiled File (v1)

• Good
– Web Services

– Easy to copy

– Hard to corrupt the whole
terrain

• Bad

Title Size Offset Value

Identifier 4 0 VTMF

Version 1 4 0x1

Levels 1 5 6

Width 4 6 (int)
• Bad

– Hard to Manipulate

– Need a lot of File Handles

– Long time to get the file in the
memory

– Single Huge File (v2)
• Can use asynchronous callbacks

• Raw File
– Multilevel

» The Level i has a half tile
size of Level i -1

– Sequential

– 4K Disk Format Blocks

– Defragmented Disk

Height 4 10 (int)

TileW 2 14 (short)

TileH 2 16 (short)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Size = # Comps * TileW * TileH

Offset(i) = i * Size + HeaderSize

i = Row * Width / TileW + Col

Row(i) = i div (Width / TileW)

Col(i) = i mod (Width / TileW)

OGL Render Thread Issues

• The GPU Loader must be
in the Render Thread

– Load Bottleneck

– Sync

• Solution

• Ex:

– GL.MakeCurrent();

– RenderScene();

– Update();

– While(Query(Rendering))• Solution

– Producer / Consumer
Problem

• Producer � File Loader

• Consumer � Render
Thread

– OGL Render Thread Load
After Render the Frame
(until swap buffer)

– While(Query(Rendering))

• Consume();

– GL.SwapBuffers(); //Block

Load Tile

Queue

Load Tile

Queue

Tile 03

Tile 04

Loaded Tile

Queue

Loaded Tile

Queue

Tile 01

Tile 02

Load From File
/ Push Loaded

Queue

Load From File
/ Push Loaded

Queue

Pop Load
Queue

Pop Load
Queue

Load From File
/ Push Loaded

Queue

Load From File
/ Push Loaded

Queue

Pop Load
Queue

Pop Load
Queue

Tile 03

Tile 03

Tile 01

Cloud

• A Huge and Dynamic Computer Farm

– Easy to add a machine

– Large Storage System

– Backup– Backup

– No Maintenance

– Pay as You Go

• Extends a Server Based Tile System

– Dynamic Load Balance

Cloud Tile Streaming

• Windows

Azure Cloud

– Performance

Analyser

Report
Queue
Report
Queue

Report 01 Analyser

– Blobs

• Cloud Drive

– Tables

– Queues

Report 01

Report 02

Report X

Cloud Tile Streaming

• The Loader Role Maps a Blob (Max 1TB) as an
NTFS/CIFS Partition Drive
– The Blob is not local, so, we create a blob cache on the

local cloud machine (HD) to improve the performance and
the Blob Access.

• When a tile is load, it remains on the machine RAM• When a tile is load, it remains on the machine RAM
until:
– Machine Memory is Low

• Discard Tiles Based on the Last Access and Aging Data

– After Loaded Data From HD, the Loader Compress it using
GZip Algorithm.

– Only Compressed Data is in Memory.
• The server does not need to use the raw data.

Cloud Communication Protocol

• HTTP interface for administration proposes
– Not yet ready

• TCP Connection (5660)
– Based on ISO 8583 Message Format – ASCII Encode

• CODE+BITMAP+FIELDS

• 0800/0810 for Connection and Authentication
– Username, Password (cipher + base64), Max TCP Frame Size

• 0600/0610 for Terrain Metadata Loading• 0600/0610 for Terrain Metadata Loading

• 0200/0210/0202 for Tile Request

• 0100/0110 for Update Server Information

– To Send a Tile, we need to take care about TCP Frame Size
• Split The Tile as a Set of TCP Frames and send it to the client

– 0210 sends the data

– 0202 is the client response for a sent data

» Remember, the connection can be lost

– The Data is compressed by GZip
• The Client need to merge the Frames and decompress it.

• The Load Balancer try to connect the client with its last used machine (to
use the cache)

Cloud Manager

• The Manager Read the Reports From the Loaders

– If all Loaders capacity are over 75% of power, then it
raises another loader machine.

– If all Loaders capacity are below 40% of power, then it
shuts down a loader machineshuts down a loader machine

– After change the cloud capacity, it recalculates the
Cloud Capacity and check the conditions again

• The Cloud must have at least one Loader machine and 1
Manager machine

• The Cloud Account has a maximum limit. In the test case, we
can use 20 processors.

Test and Results

• HD Resolution (1280 x 720) 720p

• Data Sets
– São José de Ubá Watershed – SET0

• 16K x 8K File – 1.2 GBytes
– Color @ 24 Bits (8 bits per channel)

– Height Map @ 16 Bits

• Tiled and Raw Version

– Terragen Height Map – SET1
• 4096 x 4096 File – 150 MBytes File• 4096 x 4096 File – 150 MBytes File

– Color @ 24 Bits(8 bits per channel)

– Height Map @ 8 bits

• Raw Version

• Machine
– Intel Quad Core @ 2.4 GHz

– 8 Gbytes of RAM

– NVidia 9800 GT

– 5.0 Mbps Internet Link

• Cloud
– Azure

– 1 Small Instance for Manager

– 3 Medium Instance for Loaders

Test and Results

• SET0 – 5 min

– FPS = (91.2,114.6,163.7)

– Memory = 0.8 GBytes

– Tile Lost = 1127

• SET1 – 5 min

– FPS = (92.6,153.2,158.6)

• Memory = 262 MBytes

• Tile Lost = 0

Test and Results

• SET0 – 5 min

– ROAM

• FPS =
(61.78,64.10,70.48)

– Tiled GeoClipMap

• FPS =
(102.47,137.32,145.28)

Test and Results - Videos

Conclusion and Future Works

• The system is not yet fully implemented.

• There are a lot o problems with tile loading and
memory management

• The Tiled GeoClipMap is a good Algorithm for Out of
Core Terrains

Load Balancing and Management is very difficult.• Load Balancing and Management is very difficult.

• The Tile Loss is a very difficult problem to solve.

• Make more validation tests

• Create a Local Network Server
– It was created but not tested.

• Windows Azure 1.3 is not Compatible with 1.2
– We need to make changes

Conclusion and Future Works

• Solve The Communications Problems
– Fix the 0210 package problems

– Fix the Timer for 0202

– Use more Internal Endpoints for Inter-Role Cache Share

– Reduce the Tile Loss

• Tiled GeoClipMap Algorithm
– Try to use Geometry Shaders to Improve Cracks Resolution– Try to use Geometry Shaders to Improve Cracks Resolution

– Try to use (SM5)

– Work with compressed data

– Work with level texture interpolation

• Load Optimizations
– Batch Loads

– Improve Prediction Algorithms

– Finish Administrative Interface

– Create the 4th Level in Client Machine
• The Compressed or Not Level

– HD � Memory Compressed � Memory Raw � GPU

• Compute Cloud Billing

Bibliography

● Real-Time, Continuous LOD Rendering of Height Fields, Lindstrom-Koller, 1996

● Large Scale Terrain Visualization Using The Restricted Quadtree Triangulation, Renato Pajarola

● Willem H. de Boer, GeoMipMap

● Mark Duchaineau et al, ROAM

● Thatcher Ulrich, Adaptive Quadtrees

● Henri Hakl, Diamond Terrain Algorithm

● F. Losasso, H. Hoppe, Geometry clipmaps

● C. Dachsbacher, M. Stamminger, Procedural TerrainC. Dachsbacher, M. Stamminger, Procedural Terrain

● J. Schneider, R. Westermann, GPU-Friendly High-Quality Terrain Rendering

● Malte Clasen and Hans-Christian Hege (Zuse Institute Berlin), Terrain Rendering using Spherical
Clipmaps

● Tatarchuk N.: Dynamic Terrain Rendering on GPU Using Real-Time Tessellation. ShaderX7 (Dec.
2008).

● Tatarinov, A.: Instanced Tessellation in DirectX10. GDC 2008. February 2008.

● Gee, K.: Introduction to the Direct3D 11 Graphics Pipeline. Nvision 2008.

● Castano, I.: Tessellation of Displaced Subdivision Surfaces in DX11. Gamefest 2008

● Windows Azure SDK Documentation

● Amazon Cloud Service

● MapReduce - http://en.wikipedia.org/wiki/MapReduce

● MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean &Sanjay Ghemawat, 2004.

