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Introduction and Scope

Fonte: [OROURKE98]

Computational geometry broadly construed is the study of algorithms for
solving geometric problems on a computer. The emphasis in this course is on the
design of such algorithms, with somewhat less attention paid to analysis of
performance.

There are many brands of geometry, and what has become known as
“computational geometry” is primarily discrete and combinatorial geometry.
Thus polygons play a much larger role in this course than do regions with curved
boundaries. Much of the work on continuous curves and surfaces falls under the
rubrics of “geometric modeling” or “solid modeling”, a field with its own
conferences and text, distinct from computational geometry. Of course there is
substantial overlap, and there is no fundamental reason for the fields to be
partitioned this way; indeed they seem to be merging to some extent |



Introduction and Scope

Fonte: [BERG97]

Computational geometry emerged from the field of algorithms design and
analysis in the late 1970s. It has grown into a recognized discipline with its own
journals, conferences, and a large community of active researchers. The success
of the field as a research discipline can on the one hand be explained from the
beauty of the problems studied and the solutions obtained, and, on the other
hand, by the many application domains— computer graphics, geographic
information systems (GIS), robotics, and others—in which geometric algorithms
play a fundamental role.

For many geometric problems the early algorithmic solutions were either
slow or difficult to understand and implement. In recent years a number of new
algorithmic techniques have been developed that improved and simplified many
of the previous approaches. In this textbook we have tried to make these modern
algorithmic solutions accessible to a large audience.



Introduction and Scope

Fonte: [PREPARATAS5]

A large number of applications areas have been the incubation bed of the
discipline nowadays recognized as Computational Geometry, since they provide
inherently geometric problems for which efficient algorithms have to be
developed. Algorithmic studies of these and other problems have appeared in
the past century in the scientific literature, with an increasing intensity in the
past two decades. Only very recently, however, systematic studies of geometric
algorithms have been undertaken, and a growing number of researchers have
been attracted to this discipline, christened "Computational Geometry" in a
paper by M. I. Shamos (1975a).

One fundamental feature of this discipline is the realization that classical
characterizations of geometric objects are frequently not amenable to the design
of efficient algorithms. To obviate this inadequacy, it is necessary to identify the
useful concepts and to establish their properties, which are conducive to efficient
computations. In a nutshell, computational geometry must reshape-whenever
necessary-the classical discipline into its computational incarnation.



Introduction and Scope

Fonte: [SCHNEIDERO3]

The field of computational geometry is quite large and is one of the most
rapidly advancing fields in recent times. This chapter is by no means
comprehensive. The general topics covered are binary space-partitioning (BSP)
trees in two and three dimensions, point-in-polygon and point-in-polyhedron
tests, convex hulls of finite point sets, Delaunay triangulation in two and three
dimensions, partitioning of polygons into convex pieces or triangles, containment
of point sets by circles or oriented boxes in two dimensions and by spheres or
oriented boxes in three dimensions, area calculations of polygons, and volume
calculations of polyhedra.

The emphasis is, of course, on algorithms to implement the various ideas.
However, attention is given to the issues of computation when done within a
floating point number system. Particular themes arising again and again are
determining when points are collinear, coplanar, cocircular, or cospherical. This is
easy to do when the underlying computational system is based on integer
arithmetic, but quite problematic when floating-point arithmetic is used.



The Need for Data Structures

Source: Will Thacker . Lecture notes on Data Structures at Winthrop University



The Need for Data Structures

Data structures organize data

— This gives more efficient programs.

More powerful computers encourage more complex
applications.

More complex applications demand more
calculations.

Complex computing tasks are unlike our everyday
experience.



Organization

* Any organization for a collection of records can be
searched, processed in any order, or modified.

— The choice of data structure and algorithm can make the
difference between a program running in a few seconds or
many days.

* A solution is said to be efficient if it solves the problem
within its resource constraints.
— Space
— Time

* The cost of a solution is the amount of resources that
the solution consumes.



Selecting a Data Structure

 Select a data structure as follows

1 Analyze the problem to determine the resource constraints
a solution must meet.

2 Determine basic operations that must be supported.
Quantify resource constraints for each operation.

3 Select the data structure that best meets these
requirements.

e Some questions to ask:

— Are all the data inserted into the structure at the beginning
or are insertions interspersed with other operations?

— Can data be deleted?

— Are the data processed in some well-defined order, or is
random access allowed?



Data Structure Philosophy

Each data structure has costs and benefits.

Rarely is one data structure better than another in all
situations.

A data structure requires:

— space for each data item it stores,

— time to perform each basic operation,
— programming effort.

Each problem has constraints on available time and
space.

Only after a careful analysis of problem characteristics
can we know the best data structure for the task.



The Need for Data Structures

Geometric algorithms involve the manipulation of objects which are not
handled at the machine language level. The user must therefore organize these
complex objects by means of the simpler data types directly representable by the
computer. These organizations are universally referred to as data structures.

The most common complex objects encountered in the design of geometric
algorithms are sets and sequences (ordered sets). Data structures particularly
suited to these complex combinatorial objects are well described in the standard
literature on algorithms. Suffice it here to review the classification of these data
structures, along with their functional capabilities and computational
performance.

Let S be a set represented in a data structure and let u be an arbitrary
element of a universal set of which S is a subset. The fundamental operations
occurring in set manipulation are:

1. MEMBER(u,S). Is u € S? (YES/NO answer.)

2. INSERT(u,S). Add u to S.

3. DELETE(u,S). Remove u from S.

Fonte: [PREPARATAS5]



Supose now that {S;, S,, . . ., S;} is a collection of sets (with pairwise empty
intersection). Useful operations on this collection are:

4. FIND(u). Report j, ifu e S.

5. UNION(S,,S;; S). Form the union of S;and S; and call it §,.

When the universal set is totally ordered, the following operations are very
important:

6. MIN(S). Report the minimum element of S.

7. SPLIT(u,S). Partition S into{S;,S,}, sothatS; ={vive Sandv<u}andS§, =S
-S,.
8. CONCATENATE(S,,S,). Assuming that, for arbitrary u’e S, and u”’e S, we
have u' <u", form the ordered set S=5, U S,.

Data structures can be classified on the basis of the operations they support
(regardless of efficiency). Thus for ordered sets we have the following table.

Data Structure Supported Operations
Dictionary MEMBER, INSERT, DELETE
Priority queue MIN, INSERT, DELETE

Concatenable queue INSERT, DELETE, SPLIT, CONCATENATE




For efficiency, each of these data structures is normally realized as a height-
balanced binary search tree (often an A VL or a 2-3-tree). With this realization,
each of the above operations is performed in time proportional to the logarithm
of the number of elements stored in the data structure; the storage is
proportional to the set size.
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The above data structures can be viewed abstractly as a linear array of
elements (a list), so that insertions and deletions can be performed in an
arbitrary position of the array. In some cases, some more restrictive modes of
access are adequate for some applications, with the ensuing simplifications.

Such structures are: Queues, where insertions occur at one end and
deletions at the other; Stacks, where both insertions and deletions occur at one
end (the stack-top). Clearly, one and two pointers are all that is needed for
managing a stack or a queue, respectively.

Unordered sets can always be handled as ordered sets by artificially imposing
an order upon the elements (for example, by giving "names" to the elements
and using the alphabetical order). A typical data structure for this situation is the
following.
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Definitions and Notations

The objects considered in Computational Geometry are normally sets of
points in Euclidean space. 3 A coordinate system of reference is assumed, so that
each point is represented as a vector of cartesian coordinates of the appropriate
dimension. The geometric objects do not necessarily consist of finite sets of
points, but must comply with the convention to be finitely specifiable (typically,
as finite strings of parameters). So we shall consider, besides individual points,
the straight line containing two given points, the straight line segment defined by
its two extreme points, the plane containing three given points, the polygon
defined by an (ordered) sequence or points, etc.

This section has no pretence of providing formal definitions of the geometric
concepts used in this book; it has just the objectives of refreshing notions that
are certainly known to the reader and of introducing the adopted notation.

By £ we denote the d-dimensional Euclidean space, i.e., the space of the d-
tuples (xy,...,x,) of real numbers x,, i = 1,..., d with metric (X9_, x.2)'/2.

We shall now review the definition of the principal objects considered by
Computational Geometry.

Fonte: [PREPARATAS85]



Point. A d-tuple (xy,...,x;) denotes a point p of E9 this point may be also
interpreted as a d-component vector applied to the origin of E9, whose free
terminus is the point p.

Line, plane, linear variety. Given two distinct points g, and g, in EY, the linear

combination
ag,+(1-a)q, (0 € R)
is a line in E9. More generally, given k linearly independent points q,, .. ., g, in E?
(k < d), the linear combination
0 g +0, g, +...+0, g+ (1—a,—...— o) g,
((I]E R,j=1,...,k_1)

is a linear variety of dimension (k— 1) in E°.

Line segment. Given two distinct points g, and g, in E9, if in the expression
aq,+(1 — a)g, we add the condition 0 < a < 1, we obtain the convex combination
of g, andgq,, i.e.,

ag,+(1-0a)gqg, (e R,0<5a<1).

This convex combination describes the straight line segment joining the two

points g, and g,. Normally this segment is denoted as q,q, (unordered pair).



Convex set. A domain D in E9 is convex if, for any two points g, and g, in D,
the segment q,q, is entirely contained in D. It can be shown that the intersection
of convex domains is a convex domain.

Convex hull. The convex hull of a set of points S in E% is the boundary of the
smallest convex domain in Ed containing S.

menor objeto convexo possivell



Polygon. In E2 a polygon is defined by a finite set of segments such that every
segment extreme is shared by exactly two edges and no subset of edges has the
same property. The segments are the edges and their extremes are the vertices
of the polygon. (Note that the number of vertices and edges are identical.) An n-
vertex polygon is called an n-gon.

A polygon is simple if there is no pair of nonconsecutive edges sharing a
point. A simple polygon partitions the plane into two disjoint regions, the
interior (bounded) and the exterior (unbounded) that are separated by the
polygon (Jordan curve theorem). (Note: in common parlance, the term polygon
is frequently used to denote the union of the boundary and of the interior.)

A simple polygon P is convex if its interior is a convex set.

A simple polygon P is star-shaped if there exists a point z not external to P
such that for all points p of P the line segment zp lies entirely within P. (Thus,
each convex polygon is also star-shaped.) The locus of the points z having the
above property is the kernel of P. (Thus, a convex polygon coincides with its own
kernel.)



Planar graph. A graph G = (V, E) (vertex set V, edge set E) is planar if it can be
embedded in the plane without crossings. A straight line planar embedding of a
planar graph determines a partition of the plane called planar subdivision or
map. Let v, e, and f denote respectively the numbers of vertices, edges, and
regions (including the single unbounded region) of the subdivision. These three
parameters are related by the classical Euler's formula

v-e+f=2.

If we have the additional property that each vertex has degree > 3, then it is
a simple exercise to prove the following inequalities

v<2/3e, e<3v-6
e<3f-6, f<2/3e
v<2f-4, f<2v-4

which show that v, e and f are pairwise proportional. (Note that the three
rightmost inequalities are unconditionally valid.)



Triangulation. A planar subdivision is a triangulation if all its bounded regions
are triangles. A triangulation of a finite set S of points is a planar graph on S with
the maximum number of edges (this is equivalent to saying that the
triangulation of S is obtained by joining the points of S by nonintersecting
straight line segments so that every region internal to the convex hull if S is a

triangle).




Polyhedron. In E3 a polyhedron is defined by a finite set of plane polygons
such that every edge of a polygon is shared by exactly one other polygon
(adjacent polygons) and no subset of polygons has the same property. The
vertices and the edges of the polygons are the vertices and the edges of the
polyhedron; the polygons are the facets of the polyhedron.

A polyhedron is simple if there is no pair of nonadjacent facets sharing a
point. A simple polyhedron partitions the space into two disjoint domains, the
interior (bounded) and the exterior (unbounded). (Again, in common parlance
the term polyhedron is frequently used to denote the union of the boundary and
of the interior.)

The surface of a polyhedron (of genus zero) is isomorphic to a planar
subdivision. Thus the numbers v, e, and f of its vertices, edges, and facets obey
Euler's formula.

A simple polyhedron is convex if its interior is a convex set.
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Oriented Area of Polygons



Area Computations Fonte: [SKIENAO2]
We can calculate the area of a triangle, from the coordinates of its vertices,
evaluating the cross product defined below. Note that this calculation is easily

implementable..

a; a, 1
2-AT)=| b, b, 1|=a;b,—ayb:+ ayc: —azcy +brc, —c:b,
cr €y 1

double signed_triangle_area(const Point* _A, const Point* _B, const Point* _C)
{
return( (_A[X]*_ B[Y] - _A[Y]* B[X] + _A[Y]* C[X]

- A[X]* C[Y] + B[X]* C[Y] - _C[X]*_B[Y]) / 2.0 );



Area Computations Fonte: [SKIENAO2]

We can compute the area of any triangulated polygon by summing the area of all
triangles. This is easy to implement using the routines we have already developed.

However, there is an even slicker algorithm based on the notion of signed areas for
triangles, which we used as the basis for our ccw routine. By properly summing the
signed areas of the triangles defined by an arbitrary point p with each segment of
polygon P we get the area of P, because the negatively signed triangles cancel the area
outside the polygon. This computation simplifies to the equation

1 n—I1
A(P) = 9 Z(Ia Yitl — Titl " Yi)
i=0
where all indices are taken modulo the number of vertices. See [O’R00] for an exposition
of why this works, but it certainly leads to a simple solution:

double area(polygon *p)

{
double total = 0.0; /* total area so far */

int i, J; /* counters */
for (i=0; i<p->n; i++) {
j = (i+1) % p->n;
total += (p—>pli] [X]*p-—>p[J]1[Y]) - (p—>p[J][X]*p—>p[i][Y]);

}
return(total / 2.0);



Algorithm for
Polygons Tessellation



How to tessellate a face which is not convex?
Solution from SKIENA & REVILLA, 2002, Programming Challenges, p.319

v4 v3 v8

v2 vl

v5 v6

any other polygon edge (i.e. no

v/ v4

First EAR found starting from V1 in
the CCW direction

r v3 v8 v/

Any polygon has at least two
ears. An EAR is defined if the
angle between the edges
emanating the vertex is lower
than 180° and the chord
connecting the two adjacent
vertexes should not intersect

other vertex should lie in the
triangle/ear). V5

Finds EAR of the polygon until remains a single triangle.

POL=1/2/3/4/5/6/7/8

Set two lists with the previous and next vertexes

L=8/1/2/3/4/5/6/7
R=2/3/4/5/6/7/8/1
Updates the list after the first triangle found:
L=8/1/2/2/4/5/6/7
R=2/4/4/5/6/7/8/1
Updates the list after the next triangle found:
L=8/1/2/2/2/5/6/7
R=2/5/4/5/6/7/8/1

Do until the number of triangles is lower then n-2

\.‘ .
v2 vl
v6
v3 v8 v/
‘.’*\\ ’\ \\\
V2 T vl N




Geometric Predicates



Introduction to Predicates

Now-ancient books on computing frequently use flow charts, which conveniently
introduce predicates. At the time when FORTRAN in particular, and imperative
programming in general, were at the forefront of computing, the use of flow charts was
widespread. A flow chart illustrates rather pointedly the path that control may take
during computation. This path is sketched using straight lines that connect rectangles and
diamonds. Assignment statements appear inside rectangles and if-statements appear
inside diamonds. Other elements also exist, but we concentrate here on the parts where
the linear path of program control is broken, or branches. The functions that are
evaluated and that decide the path taken at such branches are called predicates. Flow
charts have since been replaced by pseudo-code, where changing the linear program
control appears in the form of an indentation.

System design has gone back to schematics with the advance of techniques for
object-oriented design. One such popular visual language and accompanying
methodology, the Unified Modeling Language, promotes that system design should be
tackled at a higher granularity. Objects and the messages they pass to each other are
identified, but the advance of UML did not supplant—it merely enlarged—pseudo-code
and the algorithm design that it captures.

The objective of this section is to argue that crafting good geometric predicates and
using them properly is at the center of geometric computing.



Return Type of a Predicate

We generally think of predicates as functions with a Boolean return type. The
Boolean type might identify whether a counter has reached some bound, whether a
predetermined tolerance has been satisfied, or whether the end of a list has been
reached. Such predicates arise in geometric computing, but an additional type of test is
frequently needed. Because this geometric test has three possible outcomes, we refer
to it as a ternary branching test. Yet most often, we are interested in forming a binary
predicate from the three possible outcomes.

The need for three branches in a test can be seen when we consider an oriented
line splitting the plane. The plane is split into the points that lie on the positive
halfplane, the points that lie on the negative halfplane, as well as those that lie on the
line itself. A geometric library will offer such ternary outcomes to clients, and the
application programmer will decide how the predicate should be formed.

—+ve +ve

—Ve —Ve
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An application might quite suitably need to capture only two cases, the set of points
lying on the positive halfplane or the line and the set of points lying in the negative
halfplane, for example. But the geometric tests should be offered in such a way that if
the application programmer wishes to provide different handling for each of the three
cases, it is possible to do so.

Just as we refer to an interval being open if it does not include its extremities and
refer to it as closed if it does, we can also talk about either open or closed halfspaces. A
left open halfspace consists of the points lying to the left of the line, not including the
points on the line itself. A left closed halfspace does include the points on the line.
Whether open or closed, we define the boundary of the halfspace as the points on the
line. Thus, a closed halfspace includes its boundary and an open halfspace does not. The
interior of an interval is the corresponding open interval. A set is termed regular if it is
equal to the closure of its interior—an interval is regular if it is closed. By thinking of the
predicate as a ternary rather than as a binary predicate we simplify the design of a
predicate and leave the decision of choosing among the different representable sets to
the client.



The Turn Predicate (Plane Orientation)

Determining the orientation of a point with respect to the line defined by two other

points is easily defined by appealing to a function that will take us momentarily to a third
dimension.

The Cross Product v | = o7 ||vg | sin @

= = =

1|

M
H
=

=
TN g T AT T

T

.L xr I

—_ _— —_—
v =1 X Ug



The Design of an Orientation 2D Predicate

SIGN orient2d(const Point* _pl, const Point* _p2, const Point* _p3);

P3
enum SIGN { P, _©
NEGATIVE = -1, e
ZERO = 0, P, /
POSITIVE = 1
bi left turn colinear right turn

bool isLeftSide(const Point* _pl, const Point* _p2, const Point* _p3)

return orient2d(_pl,_p2,_p3) == POSITIVE;

bool areColinear (const Point* _pl, const Point* _p2, const Point* _p3)

return orient2d(_pl,_p2,_p3) == ZERO;

bool isRightSide(const Point* _pl, const Point* _p2, const Point* _p3)

return orient2d(_pl,_p2,_p3) == NEGATIVE;

38



Matrix Form of the Orient2D Predicate

PP, x P, P,

Ty —T1 T3 — T
Y2 — Y1 Y3 —y2 |

yi Y2 —yr Yz —y2 |
1 0 0

ry{ To9—T1 T3 — T9

T, To I

i yz2 ys |.
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Side of Circle Predicate

Matrix Form of the Side of Circle Predicate

A circle with center (2., 3.) and radius r in the plane has the equation

which expands to

(22 + %) = 2(zz. +yy.) + (22 + 92 — 1) = 0.

More generally,

(z— )+ (y—y)? =717,

2

A(x2+y*)+Br+Cy+D =0

is the equation of a circle in the plane provided that A # 0.

The equation above can be written as the determinant

where

Ty mn
A=z 1
Ty s
;r:f—l—y%
C=|z3+y;
T3 + 3

r24+y? =z
i +yi T
3 +y3 T2
3 +y3 3

1

L,

1

Iy 1
Ia 1
s 1

Y
h
Y2
Ys

Ptk ke

r7 + yi
x5 + Y3
25+ 3
rf +yi
x5+ 3
x5 + Y3

51
Yz
Ys
Iy
I
Iz

]

A Pffj
F/ \ jpa \_ P3

‘\r P3

on
1r}s1de circle Dll.'[SlE]E
circle boundary circle
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It is clear that the determinant in Eq. (2.1) vanishes if the point P(z,y)
coincides with any of the three points Py (x4, ), Pa(x2,y2), or Ps(x3,y3).
Moreover, we know from § 2.2 that A # 0 if and only if the three given points
are not colinear.

[t is also clear that all the points lying either inside or outside the circle gen-
erate a positive determinant and that the points lying on the other side generate
a negative determinant. Since exchanging any two rows in Eq. (2.1) would flip
the sign of the determinant, the order of the three given points does matter.
Clients of this predicate would likely rather not be careful in selecting a par-
ticular order for the three points and so it would be appropriate to take a small
efficiency hit and compute the 3 x 3 determinant for the orientation of the three
points in addition to computing the 4 x 4 determinant in Eq. (2.1). And so a
point P(z,y) can be classified with respect to a circle defined by three points
by evaluating the following equation:

_T.E + yz T Uy 1
Ty 1
4y oy 1 ! _yl
.2 2 X|x2 Y2 1
r;+y; T2 Y2 1 T3 Yz 1
r3+y; Tz ys 1
< 0 1nside,
= side_of_circle(P. P, ,P5.P;) { =0 on the circle boundary,
> () outside.
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Numerical Precision
Exact and Adaptive Arithmetic



Why using Exact Arithmetic?

Source: Ricardo Marques

e Using hard-coded tolerances does not solve!

— A tolerance of 1e-07 can be sufficient for models with
dimensions relative small.

— However, if the model has dimensions of hundreds of
kilometers, 1e-07 is insignificant. In this case, 1e+00 is a
much more acceptable tolerance, representing a relative
error of 1e-05, or 1 cm.

— At the same time, a tolerance of 1e+00 may not make
sense on small models.

e Using Exact Aritmhmetic, tolerances are no longer
needed.



What is Exact Arithmetic?

Source: Ricardo Marques

e Exact arithmetic is a technique for performing
calculations with high level of accuracy

— Is 1e-08 zero? Is -3.1415e-10 zero?

* Avoid rounding error:
— 1e+08 + 1e-16 = 1e+08 ???

— Operators in exact arithmetic, every input number
(double) is broken into two non-overlying components
(numeric) and with different order of magnitudes.

— By using successive operators, components can be broken
again. At the end, all the generated components are joined
by minimizing numerical error.



What is Adaptive/Exact Arithmetic?
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Numerical analysis is clearly the first place to look for answers about accuracy in
a world of approximations. A lot is known about the accuracy of the output of a com-
putation given the accuracy of the input. For example, to get precise answers with
linear problems one would have to perform computations using four to five times the
precision of the initial data. In the case of quadratic problems, one would need forty
to fifty times the precision. Sometimes there may be guidelines that help one improve
the accuracy of results. Given the problems with floating point arithmetic, one could
try other types of arithmetic.

Bounded Rational Arithmetic. This is suggested in [Hoff89] and refers to restrict-
ing numbers to being rational numbers with denominators that are bounded by a
given fixed integer. One can use the method of continued fractions to find the best
approximation to a real by such rationals.

Infinite Precision Arithmetic. Of course, there are substantial cosis involved in
this.

“Exact” Arithmetic. This does not mean the same thing as infinite precision
arithmetic. The approach is described in [Fort95]. The idea is to have a fixed but rel-
atively small upper bound on the bit-length of arithmetic operations needed to
compute geometric predicates. This means that one can do integer arithmetic.
Although one does not get "exact” answers, they are reliable. It is claimed that bound-
ary-based faceted modelers supporting regularized set operators can be implemented
with minimal overhead (compared with floating point arithmetic). Exact arithmetic
works well for linear objects but has problems with smooth ones. See also [Yu92] and
[Cuk M99].

Interval Analysis. See Chapter 18 for a discussion of this and also [HuPY%a] and
[HuPY96b].

Just knowing the accuracy is not always enough if it is worse than one would
like. Geometric computations often involve many steps. Rather than worrying about
accuracy only after data structures and algorithms have been chosen, one should
perhaps also use accuracy as one criterion for choosing the data structures and
algorithms.

One cause for the problem indicated in Figure 5.48 is that one often uses differ-
ent computations to establish a common fact. The question of whether the line
segment intersected the edge of the cube was answered twice — first by using the face
f and second by using the face g. The problem is in the redundancy in the represen-
tation of the edge and the fact that the intersection is determined from a collection
of isolated computations. If one could represent geometry in a nonredundant way,
then one would be able to eliminate quite a few inconsistency problems. Furthermore,
the problem shown in Figure 5.48 would be resolved if, after one found the intersec-
tion with face f, one would check for intersections with all the faces adjacent to f and
then resolve any inconsistencies.

Max K. Agoston
Computer Graphics and Geometric Modeling

Springer 2004

Figure 5.48. Intersection inconsistencies due to
round-off errors.
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But how do we know, when starting the design of a system, whether floating
point numbers are adequate? The answer is sometimes easy. It is clear that
interactive computer games, or systems that need to run in real time in general,
cannot afford to use data types not provided by the hardware. This restricts the
usable data types to int, long, float, and/or double. It is also clear that systems that
perform Boolean operations on polygons or solids, such as the ones discussed in
Chapter 28, will need to use an exact number type. In general, however, this is an
important decision that needs to be made for each individual system. Genericity is a
powerful device at our disposal to attempt to delay the choice of number type as
long as possible, but to generate one executable or program, the various
compromises have to be weighed and the decision has to be made.

At this time there is no silver bullet to determine whether to sacrifice
efficiency and use an exact number type. A simple rule of thumb is to consider
the compromise between speed and accuracy. If the system requirements
suggest speed, then we have to sacrifice accuracy, and vice versa. The answer is
of course easy if neither is required, but it is more often the case that both are.
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This theme 1s the topic of Chapter 7, but lest this 1ssue appear to be of mere
theoretical interest, an example i1s warranted. Consider clipping a segment
AB in the plane by the two positive (i.e.. left) halfspaces of C'D and EF.
[n theory the resulting clipped segment does not depend on the order of the
two clipping operations. The code below uses the type float to compute the
final intersection point directly (Gd) by intersecting AB and EF', and also
computes the ostensibly identical point indirectly (Gi) by first computing A H
then intersecting AH and E'F.
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int main()

{

const Point_E2f A(2,2), B(9,5);
const Point_E2f C(8,2), D(8,5);
const Point_E2f E(4,1), F(5,6);

const Segment_E2f AB(A,B), CD(C,D), EF(E,F);

const Point_E2f (3d = intersection_of_lines(AB, EF);
const Point_E2f H = intersection_of_lines(AB, CD);

const Segment_E2f AH(A,H);
const Point_E2f Gi = intersection_of_lines(AH, EF);

4 assert( Gd == Gi ); // fails

print( Gd.x() ):
print{ Gi.x() );

print( Gd.y() );
print( Gi.y() );
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After finding that the coordinates differ, we print the sign bit, the exponent,
and the mantissa of the two z-coordinates then those of the y-coordinates (see
67.5).

10000001 00011010000000000000COOO
10000001 00011010000000000000001
10000000 100001000000000000OOCOOO
10000000 100001000000000C000OOCOOO

o O O O

And so we see that the direct computation of the xz-coordinate leads to a man-
tissa with a long trail of zeros, whereas the indirect computation leads to an
ending least-significant bit of 1. This single-bit difference suffices for the
equality operator to conclude that the two points are not equal. Performing
the same computation using a combination of indirect steps only reduces the
quality of the resulting floating point coordinates.

50



Closest Point at a
Straight Segment



Projection of C point on AB segment:

NEAREST POINT IN A STRAIGHT SEGMENT USING INTERNAL PRODUCT

Closest point of C on AB segment:

C’=A+tc'(B—A) P=C’
Parametric value of C’ point at AB segment: C
o ABoAC| (inner product)
c — >

Projection of D point on AB segment:

Parametric value of D’ point at AB segment:

tD’

_ ABoAD
a5

tD’ >1

Closest point of D on AB segment:
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Algorithms for
Segment- Segment Intersection



Line Segments and Intersection Fonte: [SKIENAO2]

A line segment s is the portion of a line | which lies between two given points
inclusive. Thus line segments are most naturally represented by pairs of endpoints.

The most important geometric primitive on segments, testing whether a given
pair of them intersect, proves surprisingly complicated because of tricky special
cases that arise. Two segments may lie on parallel lines, meaning they do not
intersect at all. One segment may intersect at another’s endpoint, or the two
segments may lie on top of each other so they intersect in a segment instead of a
single point.

This problem of geometric special cases, or degeneracy, seriously complicates
the problem of building robust implementations of computational geometry
algorithms. Degeneracy can be a real pain in the neck to deal with. Read any
problem specification carefully to see if it promises no parallel lines or overlapping
segments. Without such guarantees, however, you had better program defensively
and deal with them.

The right way to deal with degeneracy is to base all computation on a small
number of carefully crafted geometric primitives.



HOW TO TREAT THE INTERSECTION OF STRAIGHT LINES IN ROBUST AND EFFICIENT WAY?

Source: Ricardo Marques




1.11.7 Point of intersection of two straight lines

General form of the line equation

Fonte [VINCEO5]

Given a;x + by +¢; =0
a,x + b,y + ¢, =0
Xp _ Vp _ —1
then ¢, bl |a c¢| |a b
¢, b, a, & a, b,
c.b.—cb a.c, —a.c
Intersect at X, = 21 12 y, = 271 )
ab, —ab, ab, —ab,

The lines are parallel if a,b, — a,b, = 0

>y
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Parametric form of the line equation

Given
where

and

then

and

Point of intersection

or

p=r-+Aa q=-s+¢b
r = xpl + ygj s = Xxgl + ygj

a = Xg1+ yg b = xpi + ypj

_ X, 05 = Vp) = 0 (x5 — X)

xbyu B xafvb

A

o= X, s = Vp) = 2, (x5 — Xp)
XpVa ™ Xa b

Xp=Xp+tAXg Yp=JVrt A

Xp = Xg T &Xy Yp=Ys T &Vp

The lines are parallel if x;y, — x5y, = 0
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INTERSECTION BASED ON PARAMETRIC REPRESENTATION OF SEGMENTS

C
P=A+t,,(B-A)
dC
P=C+tqp(D-C)
A
® -
(O

Consider that the distances of Cand D
points to the AB segment have signal:

d. >0 dp, <0

Parametric value for P point at the CD segment:

o ldd , o dc
" ldc]+|do ] w de—dp

0<t-p<1
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INTERSECTION BASED ON PARAMETRIC REPRESENTATION OF SEGMENTS

Signed distance can be replaced by a cross product

Therefore:

Analogously :

C B o C B
dC
fo Area
A
AB|-d ABXAC B—A)x(C-A
Am:\ -dc A = ABXAC Aren = )2( )
Definition: (double of) trianle oriented area
orient2d(A,B,C)=(B—-A)x(C-A)
orient2d(A, B,C)
dC = —
48
= orient2d(A, B, D) Note that the signs of the distances are

48

resolved naturally.




INTERSECTION BASED ON PARAMETRIC REPRESENTATION OF SEGMENTS

Parametric value of P point at CD segment:

C B

P
D

tep =

dC
dc —dp

_orient2d(A, B,C)

dc

48

_orient2d(A,B,D)

dD_

48

orient2d(A, B,C)

. tep =
Therefore: |fco = ent2d(A,B,C)—orient2d(A, B, D)

orient2d(C,D, A)

Analogously :

Fap =
AP orient2d(C,D, A)—orient2d(C, D, B)




Segment_Segment_Intersection(u, v):
if both endpoints of u are over v then

return false
end if

orient2d(C,D,A) >0

orient2d(C,D,B) >0

if both endpoints of u are under v then

return false
end if

if both endpoints of v are over u then

return false
end if

orient2d(C,D,A) <0

orient2d(C,D,B) <0

orient2d(A,B,C) >0

orient2d(A, B,D) >0

if both endpoints of v are under u then

return false
end if

orient2d(A,B,C) <0

orient2d(A,B,D) <0

if uand v are collinear then

return false
end if

ou

ifuan

return true
end if

ret.urn false 0
endif 21

if u touches v then

orient2d(C,D,A)=0

orient2d(C,D,B) =0

orient2d(A,B,C)=0

orient2d(A,B,C)=0

lel then |orient2d(C, D, A) = ori ,D, B)
X
orient2d(A,B,Cy= A,B,D)

(there are many cases)

orient2d(C,D,B) =

0 |orient2d(C,D,A) <0

/I When get to this point, there is an intersection point

orient2d(A, B,C)

b=
D orient2d(A, B,C)—orient2d(A, B, D)

return true




Algorithm for
Point in Polygon Verification



Ray Algorithm (or shot)
Philip Schneider and David Eberly Geometric Tools for Computer Graphics, 2003, p.70

14

0 1 3

A ray that part of any point within the polygon in one direction will cut any curves
on the edge of the polygon an odd number of times. If the ray cut the boundary
of the polygon an even number of times, the point is outside the polygon.
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Criteria for counting intersections of the ray with a boundary edge

14 Intersection in the interior of the segmento: counts 1x

izontal segment: da

13 12

g

Intersection in the inferior point Intersection in the superior point

of the segment: counts 1x of the segment: does not count
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