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Curves and Surfaces
Representations

Three types of representations for curves and surfaces are

common in computer graphics and geometric design: explicit,
implicit, and parametric.

Here we shall look briefly at each of these alternatives and then
settle on one particular form to use throughout this course.

Source:




Explicit Representations

When you first studied analytic geometry, you used rectangular coordinates
and considered equations of the form y = f(x). The graphs (x, f(x)) of these
functions are curves in the plane. For example, y = 3x + 1 represents a straight
line, and y = x? represents a parabola (see Figure).

Similarly, you could generate surfaces by considering equations of the form
z = f(x,y): the equation z = 2x + 5y- 7 represents a plane in 3-space, and z = x? -y?
represents a hyperbolic paraboloid.

Expressions of the form y = f(x) or z = f(x,y) are called explicit

representations because they express one variable explicitly in terms of the

other variables. )




Implicit Representations

Not all curves and surfaces can be captured readily by a single explicit
expression. For example, the unit circle centered at the origin is represented
implicitly by all solutions to the equation x? + y2 - 1 = 0. If we try to solve
explicitly for y in terms of x, we obtain

y = Vl—xz

which represents only the upper half circle. We must use two explicit formulas

to capture the entire circle.

Often it is easier just to stick with the original implicit equation rather than
to solve explicitly for one of the variables. Thus x? + y? - 1 = 0 represents a circle,
and x? + y? + z2- 1 = 0 represents a sphere. Equations of the form f(x, y) = 0 or
f(x, vy, z) = 0 are called implicit representations because they represent the curve
or surface implicitly without explicitly solving for one of the variables.



Implicit Representations

Implicit representations are more general than explicit representations. The
explicit curve y = f(x) is the same as the implicit curve y - f(x) = 0, but as we have
seen it is not always a simple matter to convert an implicit curve into a single
explicit formula. Moreover, implicit equations can be used to define closed
curves and surfaces or curves and surfaces that self-intersect, shapes that are
impossible to represent with explicit functions (Figure).

For closed curves and surfaces, the implicit equation can also be used to
distinguish the inside from the outside by looking at the sign of the implicit
expression. For example, for points inside the unit circle x? + y? -1 < 0, and for
points outside the unit circle x> + y? - 1 > 0. This ability to distinguish easily
between the inside and the outside of a closed curve or surface is often
important in solid modeling applications.



Implicit Representations
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The lemniscate of Bernoulli: (x>+y?)? - (x?-y?)? = 0.
Notice that unlike explicit functions, the graphs of
implicity equations can self-intersect.



Implicit Representations

Nevertheless, implicit representations also have their drawbacks. Given an
explicit representation y = f(x), we can easily find lots of points on the curve
(x,f(x)) by selecting values for x and computing f(x).

If our functions f(x) are restricted to elementary functions like polynomials,
then for each x there is a unique, easily computable y. Thus it is a simple matter
to graph the curve y = f(x).

On the other hand, it may not be so easy to find points on the curve f(x,y) = 0.
For many values of x there may be no y at all, or there may be several values of y,
even if we restrict our functions f(x,y) to polynomials in x and vy.

Finding points on implicit surfaces f(x,y,z) = 0 can be even more formidable.
Thus it can be difficult to render implicitly defined curves and surfaces.



Parametric Representations

There is another standard way to represent curves and surfaces that is more
general than the explicit form and yet is still easy to render. We can express
curves and surfaces parametrically by representing each coordinate with an
explicit equation in a new set of parameters. For planar curves we set x = x(t) and
y = y(t); for surfaces in 3-space we set x = x(s,t), y = y(s,t), and z = z(s,t). For
example, the parametric equations
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WWy=—y y)=—7
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represent the unit circle centered at the origin because by simple substitution we
can readily verify that x?(t) + y?(t) - 1 = 0. Similarly, the parametric equations
[egPoi®

x(s,t) = 28 y(s,t) = & (s,1)
)= —— = 2(5,1) = ——5—=
1452 442 1+5% +1° 14+ 5% 412

represent a unit sphere, since x?(s,t) + y%(s,t) + z%(s,t) - 1 = 0. Often we shall
restrict the parameter domain. Thus a parametric curve is typically the image of
a line segment; a parametric surface, the image of a region--usually rectangular
or triangular - of the plane.



Parametric Representations

The parametric representation has several advantages. Like the explicit
representation, the parametric representation is easy to render: simply evaluate
the coordinate functions at various values of the parameters. Like implicit
equations, parametric equations can also be used to represent closed curves and
surfaces as well as curves and surfaces that self-intersect. In addition, the
parametric representation has another advantage: it is easy to extend to higher
dimensions. To illustrate: if we want to represent a curve in 3-space, all we need
do is introduce an additional equation z = z(t). Thus the parametric equations

x(t)=2t—35 yii)y=3t+7 z(H)=4t+1
represent a line in 3-space. Figure illustrates a more complicated parametric
curve in 3-space.

The helix: x = cos(t), y = sin(t), z = /5.




Parametric Representations

The parametric representation has its own idiosyncrasies. The explicit
representation of a curve is unique: the graph of y = g(x) is the same curve as the
graph of y- f(x) if and only if g(x) = f(x). Similarly, if we restrict to polynomial
functions, then the implicit representation f(x,y) = 0 is essentially unique. Indeed
if f(x,y) and g(x,y) are polynomials, then g(x,y) = O represents the same curve as
fix,y) - 0 over the complex numbers if and only if g(x,y) is a constant times a
power of f(x,y). However, the parametric representation of a curve is not unique.

For example, the equations 2

2
x(t) = —5 (f)=——5
L+£2 : 1442

x(t) = sin{t) (1) = cos(t)

are two very different parametric representations for the unit circle x* + y? = 1.
Moreover, if we restrict our attention, as we shall in most of this text, to
polynomial or rational parametrizations, then it is known that every such
parametric curve or surface lies on an implicit polynomial curve or surface. The
converse, however, is not true. There exist implicit polynomial curves and
surfaces that have no polynomial or rational parametrization. Thus, the implicit
polynomial form is more general than the rational parametric form.



Parametric Representations

Nevertheless, because of their power, simplicity, and ease of use, we shall
choose to represent all the curves and surfaces in this course using parametric
representations. Moreover, our curves and surfaces will lie in an unspecified
number of dimensions, since the parametric representation works equally well in
an arbitrary number of dimensions. Note that in the one-dimensional case the
parametric representation is the same as the explicit representation, so we cover
explicit representations automatically as a special case.

Sometimes it will be helpful to think about the special case of explicit
representations, but more often than not this can confuse the issue because
parametric curves exhibit geometric properties such as self-intersection that can
never occur in explicit representations. Planar parametric curves (x(t), y(t)) are
much more flexible than the planar graphs (t,x(t)) of explicit functions.



Parametric Representations

It remains to say what kinds of functions we shall allow in our parametric
representations. Most of the remainder of this course is about how to choose the
parametric functions in order to generate suitable curves and surfaces. Generally
our functions shall be variants of polynomials: either simple polynomials or
rational functions (ratios of polynomials) or piecewise polynomials (splines) or
piecewise rational functions.

Polynomials have many advantages, especially when used in conjunction with
a computer. Polynomials are easy to evaluate. Furthermore, more complicated
functions are generally evaluated by computing some polynomial approximation,
so nothing is really lost by restricting to polynomials in the first place. In addition,
there is a well-developed theory of polynomials in numerical analysis and
approximation theory; computer graphics and geometric modeling borrow
extensively from this theory.



Curves

Perhaps the easiest way to describe a form is to select a
few points on this form. Given enough points, the eye has a
natural tendency to smoothly interpolate between data.

Here this problem will be studied mathematically. Given a
finite set of points in affine space, we will investigate methods
for generating polynomial curves and surfaces that interpolate
the points. We begin with schemes for curves and then
extends such techniques to surfaces.



Curves

e Lines

e Beziers

e B-Splines

e NURBS

e Other types of special curves:
Polylines, circle arcs and ellipse arcs



Curves
Requirement 1: Axis Independency




Curves
Requirement 2: Multiple Values




Curves
Requirement 3: Local Control




Curves
Requirement 4: Little Oscillation

High degree polynomial



Curves
Requirement 5: Versatility

>
S



Curves
Requirement 6: Uniform Sampling

ASi = ASJ

Finally:
Curves — Requirement 7:

Feasible Mathematical Formulation



Solution

Curve represented by a low-degree
(generally 3) piecewise polynomial

£=1 /\{(I) —atr+bt*+ct+d,

3 2
y)=at +b it +ct+d,;

_ 3 2
X =atf +bi+et+ Zt)=a " +bt" +ct+d,

_ 3 2
o s y®)=at +bt +ct+d,

z2()=at +bt’+ct+d.  continuity at the common
points of the parts

Parameterization

te [0, 1] local

t=0 t=1 t=0 +=1t=0 t=1
° o0 oo ° or
o i ¢ * ueuy,u,| global

ug U u, u



Differential Geometry

Generic Parameter: U
4+ Length Parameter: s = s(u)




Parameterization Requirements

P, P(u)=(1—u)P,+uP

P, [ (1-u) u_

Pu)= (1~ f(u)P,+ f(u)P

du If u, >u, = s(u,) >su,)




Geometric and Parametric Continuity

R,(0)=R,(1)

2 VA

Discontinuous Continuous: C%and G°  Continuous: C' and G

Geometric
R (0) # R, (1)

T,(0) =T, (1)

C%and G

Parametric

—_

Ry (0)=Ry(1)

T,(0) = T, (1)

C'and G°



Bézier Curves

P. of Casteljau, 1959 (Citroén)
P. of Bézier, 1962 (Renault) - UNISURF
Forest 1970: Bernstein Polynomials

P@)= Z B, ()V

where:

n .
B, (1) =£ ] A-0)"" 1"

l
pol. Bernstein

ny  nl
i) iNn—0)

coef. binomial




P(t) = iBw @)V,

Cubic Bézier

B,,(t)= Gj 1= =1—-1)

B, (1) = G) (1-1)"t' =3(1-1)t

3 3-2 ,2 2
B,,(t) = 5 (I-t)y""t"=31-1)t
B,.(t)= 5 (1-0)7" ¢ =1
3,3 - 3 -
2.Bs(0)= [a-n)+:] =1

P(t)=(1-1V, +3(1-0)*tV, +31-0)* V, +£V,




Bernstein Cubic Polynomials

A Bo,3 + B, 3+ 82,3 + 83,3




Properties of a Cubic Bézier

P(t)=(1—-1)V, +31=0)*t V, +3(1-0)* V, +1° V,

d

=P =-31-1)", +l60-0r+30-02V + -3 +60 -0V, +£7 V,

R(1)




Control of a Cubic Bézier




Convex Hull

ﬁ(t)zzn:aivi with Zn:ai =1
i=0 i=0




Demonstration

Induction n=1

P=a,V,+a,V, a,+a =1 @ ok

n=2

Py=a,V,+a,V,+a,V, oy+a,+a,=1

— a. (94 — —
PH=(a, + 0 LV |+a, V. o, +a)+a, =1
( ) ( 0 1)|:(a0 +al) 0 (ao +a1) 1:| 272 ( 0 1 2

ok

P(¢) is interior




Foley Equation

. v,
4

P(t) .

—

Vo

Pt)=(1-1)*V,+30=0)*tV +31-0)* V, +1° V,

-1 3 =3 1]V,
) 3 -6 3 0|V,
PH=(  t 1 *
(0= >—3 3 0 0|V,
10 0 0]V,

< < <

SN ==

<

I & I

SN <=

s\




Reduction from n=3 to n=2

P)=(1-1)°V,+31=1)*t V. +31-0)t* V, +1° V,

V) =(1-0V, +tV

A

VO =1-1)V,+1V,

Vi) =(1-D)V,+tV,

B(t)=(1-0) [1=0)V, +1V [+ 200y A=)V, +2V |
+t2[(1—t) v, +t\73]

Pt)=(1-1)* V' +2(1-0)t V! +1* V)| Bezier n=2




Reduction from n=2 to n=1

P)=(1-0* V' +2(-0t V' +1* V]

r

Vi =(1-0)V, +1V!

Vi =A-0)V' '+t V!

Bty=(1-0) 1=V +1V |+ efa -0 +4v |

P(t)=(1-0)V? +tV!|  Bezier n=1




Calculation of a Point

Showthat: B, (t1)=(1-1)B,, (t)+tB,_,, (7)



Subdivision of Cubic Bézier

+ — N <t o
T~ ot <+ O
N Ao o
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Construction of a Bezier

u=1/2

P(1/2)



Curve fitting

P(t)=(1—-1)V, +31=0)*tV, +3(1-0)* V, +1° V,

%13(1:) =-3(1-12V, +[3A -2 =61 -]V +|61-0) =32 |V, + 322 V.
=3(1-1)>V, 4332 =4t + 1)V +3(=32 +20) V, +31* V,

4 poy=-3',+3%, =377

d - - - s -

4 b= V437, =7,

t
2
d—zP(t):6(1—t)V0+3(6t—4)Vl+3(—6t+2)V2+3tzV3
dt

2
e PO)=6V,-12V,+6V, =6(V,~27,+V,)

2

“ 2 P)=6V,-12V,+6V, =6(V -2V, +V,)
4




New notation




Derivatives in the new notation

P()=1-1)p, +3(0-0tr. +31-0)f* 1, +p,.,

d

EB(O)=3(1',-—1J,-)

d’ -
F(0)=6(p,~2r1,+1,,)

dr ’

d2
P

t }3(1) 26( r,—21,, +pi+1)



Construction of a curve that passes
at 2 points

P'(1)=0

6(p,—2r,+1,)=0

0

6( 1'0—211+p1)

1
I zg(pl _po)

L, :_(pl _po)




Construction of a curve that passes
at 3 points

D — D _ p —21‘ +l :O
Bry=P 1('0) B0 0~ 21+,

1 1,

d=p)l +pr =p,
r,—21,+p, =p,—2r +1,

r,—21,+p,=0

—1 0 O |r, P,

d=p) p 0|1 P,
-2 2 —1|r 0
0 -1 2 |\l P,

S = O N




Constructive Method: given n points
add one more

(1-p) p O0]1, P,
-2 2 —1|r, [=|-r_
B 0 -1 2_ ln+1 P




Interpolation: given p,...p,,, find I’s and r’s




Bezier interpolation

Given: np points

AAAAAAAAAAAAAAAAAA po,pl,' . .,pnp—l
n,

P, Find: 2(np-1) points
[0, 1

> “np-1

I'O’rl’. ) "rnp—Z

Criteria:

p”():O = 6(p0 —21’0 +ll):O — 21’0 —l] :po

p np—l_O :>6( np—2 np—l +pnp—1) 0 — _rnp—Z +2]np—1 np-1

3d(p—1)=3d_,(x-p) = dl+d_x,=(d_+d)p,

dp left d_lp"nghz i \R7j i i—1\" i

" :>6(l}—1_2li+pi)=6(pi_2ri—1+li) = -1, +2 -2 +=0

right

pi”‘leﬁ:pi



Bezier interpolation

Criteria:

-4 =p,
dl+d x=(d_+d)p

—1,+2 -2+ =0

1—

_rnp—Z +2[np—1 np-1

resulting linear system:
P 2-10 00 0 0 O] D

0[5
0dd 00 0 0 0f]} (d,+d)p,
1-22-10 0 0 0rx 0
00 0dd 0 0 0L || @+dp,
00 1-22-1 0 0| | 0
00 0O0O0d,d, O|L,||d,+d )p.,
00001 =2 2 -, 0
00 000 0 -1 2{/, D,

solve forl and r



B-Splines

v, G

P(u) = Zn:Nl.’p(u) V.

J

p = polynomial degree N, ;(u)
control the continuity ( cr- )

(ui+p+l - u)

( l+p+1 l+1 )

L)+ Ny pr (1)

 vertexes
+ nodes

obs.: % =1 by definition.

U={uo, Uy, ..., U} U, = nodes (knots)
[ui,U;, ;] = segments (spans)

1 if U,
Ni,O(u): 1 ME[.ML in) m=n+p+1
0 otherwise —0 N
= Nio(u)
& } } O & < >
Up Uq Up--U; U1 - Un u



Properties of N, ,(u)

N&o negativa: N, (u)=0 para qualquer u, i, e p.
Particdo da unidade: 2. N, (u)=1 para todo ue [uy,u,].

Suporte Igcal: N; ,(u)=0 se uéelu, ,u,-fpﬂ]. Mais ainda, in
qualquer intervalo dos nos no maximo p+1 das N, ,(u)
S3a0 Nao zero.

Diferenciabilidade: todas as derivadas de N, ,(u)
existem no interior de um intervalo de nds (onde é
polindmial) . Nos nos N, (u) € p-k diferenciavel, onde k
é a multiplicidade do né.

Extremo: exceto para o caso p=0, N, ,(u) tem apenas
um ponto de maximo.



Uniform Spline

—u. u. .. —u
Ni p(u) = (u ul) Ni p-1 (u) + ( e ) Ni+1 p-1 (u)
’ (ui+p —U, , (ui+p+l _ui+l) ,
Uj+~| = UJ =d
(u—u,) (u, +(p+1)d —u)
N, )= N, @)+ P N, )

pd pd



Uniform Splines
p=0 and p=1

p=0 N; o(u)

I if uelu, u,)
Nio(u): ' ° 5 o T ¢
’ 0 if uelu u,) 0 .. ud u up+d
=1 U—u. u.+2d—u
P Ni,l(”):( I)Ni,p—l(u)-l_(l d )Ni+1,p—1(u)
0 if uel0 u)
(u—u) it wuelu u,)
N,w=1 4
’ (u. +2d —u) :
l if ME[MH_I ui+2)
d
0 it uelu,, u,]

/\Ni,z(u)

u-d u  u+d us+2d




Uniform Splines
p=2

Nig 4 (U)N; 1(u) Niq4(u)

u-d u u+d u+2d u+3d

_ u—1u, u.+3d —u)

P2 N =N N 1)

0 if uel0,u)

2

(uz—du;) if welu,u.,)

N, () = (u—u,)u,+2d —u) +2(Z;2+ 3d —u)(u—(u,+d)) it uelu u)
2
(y, +2352_M) if welu,,u,,)

0 if wuelu,,,u,l




Polynomials of Uniform B-Spline

:(u—u) (u, +(p+Dd —u)

N, , () N, i (u)+ Ny (1)
pd pd
u u; ui+d u+2d u+3d u+4d
Nio () 0 1 0 0 0 0
Nigo@) | O 0 1 0 0 0
Nii(w) 0 (u-u;) (u+2d-u) 0 0 0
Ni+l,l (M) 0 0 (u-(u,—+d)) (Mi+3d-u) 0 0

(u-u;) uA2d-u)2d* +

2 2
NiaQu) | O ey 12d | s ue(urrd)) 2

(uA3d-u)2d* 0 0

(u-(ud)) uA+3d-w)2d* +

2 72
(urrdd-u)(u-(ua2d)2d (u4d-u)/2d- | 0

Niia@) | 0 0 (u-(utd)2d°

[(u-1;)*(ui+2d-u) +
(u-w;)(uit3d-u)(u-(ui+d))
+(uAdd-u) u-(ud))* |
/6d°

[(u-1;) (uA3d-u)* +
(udd-u)(u-(urd))uA3d-u) | (uAdd-u)’16d’ | 0
+ (udd-u)*(u-(u+2d))/6d°

Nis(w) | O | (u-u)/6d’

t t=(u-u;)ld t = (u-(urd))ld t = (u-(u+2d))ld t=(u-(u+3d))/d

Nis(t) | 0 /6 (-38437431+1)/6 (3r-63+4)/6 (1-'6 0




Segments of the Cubic B-spline

p(1), (313-612+4)/6 (-3t3+3t2+3t+1)/6
0,7

0,6

0,5
0,4 |
0,3
0,2
0,1

0,0 | | | T
00 02 04 06 08 1,0




Basis Functions

Fori=0,...,n
Fort=0, ..., 1 L L
P;(l‘)—(l t) Vl 3t — 6t +4‘—/;+—3t +3t"+3r+1 —;H l‘_‘—/;
6 6 6 6




Periodic B-Spline
- Foley -

For each pairV, V., , i=0,...,n
For each t=0,...,1

-1 3 =3 1|V, Vi,
~ 3 -6 3 0|V, V.
P(t):<t3 t* ot 1> ’ )
_3 O 3 O ‘/i+1,x ‘/l+2y
| 1 4 1 O_ _‘/i+3,x ‘/1+3,y
Periodic:
=0, ..., n
V_1=Vn
Vi =V

Vn+2 = V1




Non Periodic B-Spline
- Foley -

e vertexes
+ nodes

n-1

P(0) = (V,+ 4V + V,)/6
P”(0) =V, -2V,+ V,=0
—V,=2V,-V,

i=0; P(0) = V,

P(1) = (Vn-1+ 4Vn+ Vn+1)/6
P”(1) = Vn-1'2Vn+ Vn+1
= V=2V, -V,

i=n-1; P(1) =V,



Nuip)

0,6

0,5

0,4

0,3

0,2

0,1

0,0

Periodic Basis

\'}
° 4
V.=V
° -3 5
N, () =—
P (u,'+p

Periodic Uniform Cubic B-Spline
U ={0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0}

A WaWAWAWaA WA
ARVARVERVARYERVERYAR

[ AN AN A A A
// AVAWAWAWAWA \\

ERVARVARVARVER VAR

AN A A A

S S NN NN N

\

o,

u

1,0

— N(u,0,3)
— N(u, 1,3)
— N(u,2,3)
— N(u,3,3)
— N(u,4,3)
— N(u.6,3)
— N(u,7.3)

Ny pa ()



Non Periodic Basis

Nonperiodic Uniform Cubic B-Spline
U={0,0,0,0, 1/4,2/4,3/4,1,1, 1, 1}

1,0
0,8
— N(u,0,3)
0.6 /\ — Nu,1,3)
g — Nu,2,3)
= — N(,3,3)
= — N(u,4,3
04 - (4.3)
— N(u,6,3)
— Nu,7,3)
0,2
0,0 ; T T ‘
0,0 0,2 0.4 0,6 0,8 1,0
u
(u_u,') (ui+p+1 —l/l)
Nl.’p(u)z—Ni,p_l(u)+—Ni+1,p_1(u)
(ui+p —U; (ui+p+l _ui+l)



Bézier and B-Spline

Bézier by means of a Cubic B-Spline
U={0,0,0,0,1,1,1,1}

1,0
0,8
06
=
s
=z
0,4
0,2
0,0 \
0,6 0,8 1,0

0,0 0,2 0,4

1

(ui+p+l —Uyyy)

U—u; (ui+ 41 Lt)
uNi’p_l(u) +LN‘+1,,;—1(”)

ui+p i

Ni,p(u)z



Periodic B-Spline
- Interpolation -

Consider the nodes
as given points

Fori=0,..., n
PI(O) = (Vi-1+ 4Vi+ Vi+1)/6;

.V4P4(0) \;2
;Vneciiee);es 4 1 0 0 0 1 @ ] ’}:>0 \
1 4100 0[[V| |P
1o 1 4 1.0 0)v,|_JB|
6/0 0 1 4 1 oflv,| |P
0001 4 1|[V]| |P
1 0 0 0 1 4_\;/ ”n)




Non Periodic B-Spline
- Foley -

* vertexes B
+ nodes Ve

~., V.. Consider the nodes
as given points

P0=V0 ;Pn=vn;
Fori=1,..., n-1
PI(O) = (Vi-1+ 4Vi+ Vi+1)/6;

I
|
|

1000 0 OlfV] [P
1 4100 0||V| |P
1014100<‘§>:<’:)2>
6/0 0 1 4 1 Of|V,| |P
000 1 4 1||V,| |B
00000 1]V, [P




Rational Functions

From trigonometry: u = tan(e/2)

O o1
o 0.8\
— 1—u®> 2u .
P(I/t) :( 20 zj 0.6 \
I1+u” 1+u | \\
uel0,1] 0.4 \
0.2 \\




Conics

a conic written in the axis system
whose origin is a conic point

»
»

X
ax> +bxy+cy’ +dx+ey=0
X=1y
at’y’ +bty’ +cy’ +dty+ey=0
dt+e dt’ + et

y=— X =—
at> + bt +c at> +bt+c

Any conic can be represented parametrically as a fraction
of quadratic polynomials




NURBS
Non Uniform Rational B-Splines

W(w)x(u) | W
wu)y(u) | & Wy,
w(u)z(u) izz(): o ) Wi
L ow) v

x(w) (X,

g " wN. (u
/ Ly =Y ip (4) I
>

-0
\Z(M)) ! ZWka,p(u) \Zi,
k=0

WN, , ()
R (w)y, where R (u)=—"—2
2wy |z ] > W N, ()
k=0




Conics as NURBS

BO,2 (u)w, \70 + BL2 (u)w, \71 + Bz,2 (u)w, \72
BO,2 (u)w, + Bl,2 (w)w, + Bz,2 (u)w,

P(u) =

where :
Bi’z(u)zNi’z(u) with U ={0,0,0,1,1,1}

—_

Faux et al. Vi w;=s/(1-s)

W,W, /w; — determines the conic

Hyperbole (w>1)

Parabola (w;=1)
"\ Ellipse (w,<1)
\

]3(%):5’ and
§=(1—S)M +s\71



Circle defined by NURBS

{x(u)} ZS:R (u ){ } where R ,(u)= 8WiNi’2(u)

I/t l
y( ) 0 ZWka,z(u)
k=0
{wl=11, f J; J; V2 1} U={0,0,0, 1/4,1/4,1/2,1/2, 3/4, 3/4,1, 1, 1}
(X3, ¥3) X2, ¥2) (X1, Y1)
0:6
0.4
n=8 (x,,y - (X0 Yo)
p=2 -1 -0.8 -0.6 -0.4 -0.20 0.2 0.4 0.6 0.8 1 (X , y )
Mm=12 o 578
06
s, Yo (%% Yo (47, 7



