
Computer GraphicsComputer Graphics

for Engineeringfor Engineering
Numerical simulation
in technical sciences

Object Oriented ModelingObject Oriented Modeling

Luiz Fernando Martha

André Pereira

Graz, Austria

June 2014

Object Oriented ModelingObject Oriented Modeling

Outline

• Basic Object-Oriented Concepts

• UML (Unified Modeling Language)

• Object-Oriented Software Modeling:

RPN Calculator

• Introduction to Design Patterns

Object-Oriented ApproachObject-Oriented Approach

Most of the methods used in software development houses are based on a

functional and/or data-driven decomposition of the systems. These approaches

differ in many ways from the approaches taken by object-oriented methods

where data and functions are highly integrated.

Object-oriented systems development is a way to develop software by

building self-contained modules or objects that can be easily replaced, modified

and reused. It depicts the view of real world as a system of cooperative and

collaborative objects. In this, software is a collection of discrete objects that

Object-Orientation

collaborative objects. In this, software is a collection of discrete objects that

encapsulates data and operations performed on that data to model real world

objects. A class describes a group of objects having similar structures and similar

operations.

Object Oriented Philosophy is very much similar to real world and hence is

gaining popularity as the systems here are seen as a set of interacting objects as

in the real world. To implement this concept, the process-based structural

programming is not used; instead objects are created using data structures. Just

as every programming language provides various data types and various variables

of that type can be created, similarly, in case of objects certain data types are

predefined. (Nath, 2014 – Lecture Notes on Object-Oriented Methodology)

Object-Orientation
The object-oriented approach allows better organization, versatility and reuse of source

code, which facilitates upgrades and improvements in the programs. The object-oriented

approach is characterized by the use of classes and objects, and other concepts that will

be clarified below.

• Classes are kinds of automakers objects that define its characteristics such as

which functions are capable of performing and which attributes the object has.

This type of programming allows the user to solve problems using real world

concepts.concepts.

• Object is an instance generated from a class. An object is identified from the

methods and attributes it has.

• Encapsulation is the act of hiding from the users the internal processes of an

object, class or method.

• Inheritance (and polymorphism) is a feature that allows a given class to inherit

the characteristics of another class. That is, the descendant acquire all methods

and attributes of the parent class.

Methods are functions that object can perform.

Attribute is everything an object has as a variable.

Object-Orientation

Class, Object and Encapsulation

#ifndef STACK_H

#define STACK_H

class Stack

{

public:

Stack();

#ifndef REAL_H

#define REAL_H

class Real

{

public:

Real(double _val);Stack();

~Stack();

void push(double _n);

double pop();

bool isEmpty();

void show();

private:

int m_top;

double *m_elems;

};

#endif

Real(double _val);

~Real();

Real sum(Real _n);

Real sub(Real _n);

Real mul(Real _n);

Real div(Real _n);

private:

double m_value;

};

#endif

#ifndef STACK_H

#define STACK_H

class Stack

{

public:

Stack();

#ifndef REAL_H

#define REAL_H

class Real

{

public:

Real(double _val);

#ifndef STACK_H

#define STACK_H

#include "real.h"

class Stack

{

public:

Stack();

Object-Orientation

Class, Object and Encapsulation

Stack();

~Stack();

void push(double _n);

double pop();

bool isEmpty();

void show();

private:

int m_top;

double *m_elems;

};

#endif

Real(double _val);

~Real();

Real sum(Real _n);

Real sub(Real _n);

Real mul(Real _n);

Real div(Real _n);

private:

double m_value;

};

#endif

Stack();

~Stack();

void push(Real _n);

Real pop();

bool isEmpty();

void show();

private:

int m_top;

Real* m_elems;

};

#endif

Object-Orientation
The object-oriented approach allows better organization, versatility and reuse of source

code, which facilitates upgrades and improvements in the programs. The object-oriented

approach is characterized by the use of classes and objects, and other concepts that will

be clarified below.

• Classes are kinds of automakers objects that define its characteristics such as

which functions are capable of performing and which attributes the object has.

This type of programming allows the user to solve problems using real world

concepts.concepts.

• Object is an instance generated from a class. An object is identified from the

methods and attributes it has.

• Encapsulation is the act of hiding from the users the internal processes of an

object, class or method.

• Inheritance (and polymorphism) is a feature that allows a given class to inherit

the characteristics of another class. That is, the descendant acquire all methods

and attributes of the parent class.

Methods are functions that object can perform.

Attribute is everything an object has as a variable.

#ifndef COMPLEX_H

#define COMPLEX_H

class Complex

{

public:

Complex(double _re,

double _im);

~Complex();

#ifndef REAL_H

#define REAL_H

class Real

{

public:

Real(double _val);

~Real();

Real sum(Real _n);

Object-Orientation

Inheritance and Polymorphism

~Complex();

Complex sum(Complex _n);

Complex sub(Complex _n);

Complex mul(Complex _n);

Complex div(Complex _n);

private:

double m_real;

double m_imag;

};

#endif

Real sum(Real _n);

Real sub(Real _n);

Real mul(Real _n);

Real div(Real _n);

private:

double m_value;

};

#endif

#ifndef NUMBER_H

#define NUMBER_H

class Number

{

public:

Number(int _type);

~Number();

Number sum(Number _n);

#ifndef COMPLEX_H

#define COMPLEX_H

class Complex

{

public:

Complex(double _re,

double _im);

~Complex();

#ifndef REAL_H

#define REAL_H

class Real

{

public:

Real(double _val);

~Real();

Real sum(Real _n);

Object-Orientation

Inheritance and Polymorphism

Number sum(Number _n);

Number sub(Number _n);

Number mul(Number _n);

Number div(Number _n);

private:

int m_type;

};

#endif

~Complex();

Complex sum(Complex _n);

Complex sub(Complex _n);

Complex mul(Complex _n);

Complex div(Complex _n);

private:

double m_real;

double m_imag;

};

#endif

Real sum(Real _n);

Real sub(Real _n);

Real mul(Real _n);

Real div(Real _n);

private:

double m_value;

};

#endif

#ifndef NUMBER_H

#define NUMBER_H

class Number

{

public:

Number(int _type);

#ifndef COMPLEX_H

#define COMPLEX_H

#include "number.h"

class Complex : Number

{

public:

Complex(double _re,

#ifndef REAL_H

#define REAL_H

#include "number.h"

class Real : Number

{

public:

Real(double _val);

Object-Orientation

Inheritance and Polymorphism

Number(int _type);

~Number();

Number sum(Number _n);

Number sub(Number _n);

Number mul(Number _n);

Number div(Number _n);

protected:

int m_type;

};

#endif

Complex(double _re,

double _im);

~Complex();

Number sum(Number _n);

Number sub(Number _n);

Number mul(Number _n);

Number div(Number _n);

private:

double m_real;

double m_imag;

};

#endif

Real(double _val);

~Real();

Number sum(Number _n);

Number sub(Number _n);

Number mul(Number _n);

Number div(Number _n);

private:

double m_value;

};

#endif

#ifndef NUMBER_H

#define NUMBER_H

class Number

{

public:

Number(int _type);

#ifndef COMPLEX_H

#define COMPLEX_H

#include "number.h"

class Complex : Number

{

public:

Complex(double _re,

#ifndef REAL_H

#define REAL_H

#include "number.h"

class Real : Number

{

public:

Real(double _val);

Object-Orientation

Inheritance and Polymorphism

Number(int _type);

~Number();

virtual Number sum(Number _n) = 0;

virtual Number sub(Number _n) = 0;

virtual Number mul(Number _n) = 0;

virtual Number div(Number _n) = 0;

protected:

int m_type;

};

#endif

Complex(double _re,

double _im);

~Complex();

Number sum(Number _n);

Number sub(Number _n);

Number mul(Number _n);

Number div(Number _n);

private:

double m_real;

double m_imag;

};

#endif

Real(double _val);

~Real();

Number sum(Number _n);

Number sub(Number _n);

Number mul(Number _n);

Number div(Number _n);

private:

double m_value;

};

#endif

UML

Unified Modeling LanguageUnified Modeling Language

UML
Unified Modeling Language

UML is an industry-standard language for:

Software Components

UML
Unified Modeling Language

Definition:

It is a graphical language for visualizing, specifying, constructing

and documenting the artifacts of an object-oriented computing

system.

Definition:

It is a graphical language for visualizing, specifying, constructing

and documenting the artifacts of an object-oriented computing

system.

UML
Unified Modeling Language

Advantages:

- Fast, efficient and effective development of programs;

- It reveals the desired structure and behavior of the system;

- It allows the visualization and control of the system architecture;

- Better understanding of the system under construction and risk

management.

UML
History

1993

2005

UML
Views (Architecture of an OO System)

UML Building Blocks

Things:

The basic entities in the model.

Relationships:

Tie things together.

Diagrams:

They are graphs of things and their relationships.

Things in UML
Building Blocks

Things in UML
Building Blocks

Things: Classes in UML

#ifndef NUMBER_H

#define NUMBER_H

class Number

{

public:

Number(int _type);

How to represent

this class in UML?

Building Blocks

Number(int _type);

~Number();

virtual Number sum(Number _n) = 0;

virtual Number sub(Number _n) = 0;

virtual Number mul(Number _n) = 0;

virtual Number div(Number _n) = 0;

protected:

int m_type;

};

#endif

this class in UML?

Things: Classes in UML

#ifndef NUMBER_H

#define NUMBER_H

class Number

{

public:

Number(int _type);

Number

m_type

sum(_n)

sub(_n)

mul(_n)

div(_n)

Number

m_type:int

+ sum(_n:Number) : Number

+ sub(_n:Number) : Number

+ mul(_n:Number) : Number

+ div(_n:Number) : Number

Building Blocks

Number(int _type);

~Number();

virtual Number sum(Number _n) = 0;

virtual Number sub(Number _n) = 0;

virtual Number mul(Number _n) = 0;

virtual Number div(Number _n) = 0;

protected:

int m_type;

};

#endif

div(_n) + div(_n:Number) : Number

Things: Classes in UML

#ifndef NUMBER_H

#define NUMBER_H

class Number

{

public:

Number(int _type);

Number

m_type

sum(_n)

sub(_n)

mul(_n)

div(_n)

Number

m_type:int

+ sum(_n:Number) : Number

+ sub(_n:Number) : Number

+ mul(_n:Number) : Number

+ div(_n:Number) : Number

Building Blocks

Number(int _type);

~Number();

virtual Number sum(Number _n) = 0;

virtual Number sub(Number _n) = 0;

virtual Number mul(Number _n) = 0;

virtual Number div(Number _n) = 0;

protected:

int m_type;

};

#endif

Real

m_value

sum(_n)

sub(_n)

mul(_n)

div(_n)

Complex

– m_real:double

– m_imag:double

+ sum(_n:Number) : Number

+ sub(_n:Number) : Number

+ mul(_n:Number) : Number

+ div(_n:Number) : Number

div(_n) + div(_n:Number) : Number

Relationship in UML
Building Blocks

Aggregation Composition

Relationship in UML
Building Blocks

Relationship: between Classes UML

Stack

m_top:int

m_elems:*INumber

push(_n:INumber)

pop() : INumber

isEmpty() : bool

INumber

m_type:int

+ sum(_n:INumber) : INumber

+ sub(_n:INumber) : INumber

+ mul(_n:INumber) : INumber

+ div(_n:INumber) : INumber

Building Blocks

Real

m_value

sum(_n)

sub(_n)

mul(_n)

div(_n)

Complex

– m_real:double

– m_imag:double

+ sum(_n:INumber) : INumber

+ sub(_n:INumber) : INumber

+ mul(_n:INumber) : INumber

+ div(_n:INumber) : INumber

isEmpty() : bool

show()

+ div(_n:INumber) : INumber

How are these

classes related?

How to represent these

relationship in UML?

Relationship: between Classes UML

Stack

m_top:int

m_elems:*INumber

push(_n:INumber)

pop() : INumber

isEmpty() : bool

INumber

m_type:int

+ sum(_n:INumber) : INumber

+ sub(_n:INumber) : INumber

+ mul(_n:INumber) : INumber

+ div(_n:INumber) : INumber

Building Blocks

Real

m_value

sum(_n)

sub(_n)

mul(_n)

div(_n)

Complex

– m_real:double

– m_imag:double

+ sum(_n:INumber) : INumber

+ sub(_n:INumber) : INumber

+ mul(_n:INumber) : INumber

+ div(_n:INumber) : INumber

isEmpty() : bool

show()

+ div(_n:INumber) : INumber

Diagrams in UML
Building Blocks

CRC: class, responsibility and collaboration

Object Oriented Software ModelingObject Oriented Software Modeling

A model is an abstraction of something for the purpose of understanding it

before building it (Rumbaugh, 1994). Because, real systems that we want to

study are generally very complex.

In order to understand the real system, we have to simplify the system. So a

model is an abstraction that hides non-essential characteristics of a system

and highlights those characteristics, which are pertinent to understand it.

Object Oriented Modeling

and highlights those characteristics, which are pertinent to understand it.

A model can also be understood as a simplified representation of reality. A

model provides a means for conceptualization and communication of ideas in a

precise and unambiguous form.

The characteristics of simplification and representation are difficult to

achieve in the real world, since they frequently contradict each other. Thus

modeling enables us to deal with the complexity of a system.

(Source: Nath, 2014 – Lecture Notes on Object-Oriented Methodology)

Object Oriented Modeling

Object Oriented Modeling

• Requirements

- List of requirements / needs

- User Interface

• Object Oriented Analysis

Object Oriented Modeling

- Use Cases

- Robustness Diagram

• Object Oriented Design

- Sequence Diagram

- Class Diagram

• Object Oriented Programming

Requirements

It should be possible to insert several numbers on the calculator. The numbers

can be integers, real and complex. The real numbers have two decimal places

and the complexes also two decimal places in the real and imaginary parts.

Object Oriented Modeling
of a RPN Calculator

It should be possible to perform the four basic operations: addition, subtraction,

multiplication and division.

Operations must be carried out with the last two numbers entered in the

calculator. Therefore, an operation requires that the users enter with at least

two numbers. The result of each operation is a new number which replaces

the two numbers used in the operation. The remaining of the numbers is

unchanged.

It should be viewed only the last four numbers entered.

User Interface

Sketch of the program graphical interface.

Object Oriented Modeling
of a RPN Calculator

There are missing in the sketch the following buttons:

- enter

- delete the last entered number

- Switching to different type of number

Object Oriented Analysis

Use Cases
of a RPN Calculator

Use Cases

- Choose the Number Type
May be an option held at the beginning of program execution, which will define the

behavior of the calculator. During program execution, the user can also press a button to

choose the type of number that he wants to work. The numbers that are already in the

calculator should be automatically converted to the new format.

- Enter a number
The use case "Enter a Number" is initialized when the user presses a button corresponding

Object Oriented Analysis
of a RPN Calculator

The use case "Enter a Number" is initialized when the user presses a button corresponding

to the number that he want to enter on the calculator. If the number is of type Integer or

Real it just click the button with the number, but if the type is complex it must first insert the

real part and then, after a space, the imaginary part.

- Perform an Operation
This use case starts when the user presses the corresponding button operation he wants to

accomplish. Any operation is performed with the last two numbers entered in the calculator,

but the result of course depends on the operation.

- Remove the last number
Removes the last number without performing operations. The previous becomes the last.

- Quit the Program
This use case starts when the user clicks the close box of the program in the main

application window. The values that are in the calculator are lost.

Robustness Diagram
A robustness diagram is basically a simplified UML collaboration diagram.

A initial reading of the use cases suggests that following will be part of the system:

- A single entity object representing the current calculator that the program is
working with (RPN).

- An arbitrary number of entity objects, each representing one of the numbers

Object Oriented Analysis
of a RPN Calculator

- An arbitrary number of entity objects, each representing one of the numbers
(Number) that is in the current calculator. This number can still be: integer

(Integer), real (Real) or complex (Complex).

- A special data structure to store the numbers, where the last element added to

the structure must be the first one to be removed. Therefore, the structure that is
most suitable for this application is the stack (Stack).

- A boundary object representing the interface between the calculator system and
the human user (RPN_GUI).

- A controller object that carries out the use cases in response to user gestures on
the GUI (RPNController). (For a problem of this small size, a single controller is

sufficient.)

Robustness Diagram

The various use cases work with these objects, as follows:

- Enter a number involves taking the new user input, and then tell the RPN object

to add a new number with this information in its data structure.

- Perform an operation involves removing the last two numbers stored in RPN

object, perform the operation with these numbers and display the result on the

screen, which is added as a new item in your collection.

Object Oriented Analysis
of a RPN Calculator

screen, which is added as a new item in your collection.

- etc…

Sequence Diagram

Each of the use cases discovered in the analysis of the system will be realized by

a sequence of operations involving the various objects comprising the system:

Object Oriented Design
of a RPN Calculator

Sequence Diagram

Object Oriented Design
of a RPN Calculator

Object Oriented Design
of a RPN Calculator

Sequence Diagram

Object Oriented Design
of a RPN Calculator

Sequence Diagram

Object Oriented Design
of a RPN Calculator

Class Diagram

Introduction to Design PatternsIntroduction to Design Patterns

- Identification of Objects (difficult task)

- Techniques for System Decomposition in Objects

- Identification of non Obvious Abstraction

Design Patterns

- Identification of non Obvious Abstraction

