nuMsIM

Numerical simulation
in technical sciences

Object Oriented Modeling

Luiz Fernando Martha
André Pereira

Graz, Austria
June 2014

Outline

* Basic Object-Oriented Concepts
 UML (Unified Modeling Language)

e Object-Oriented Software Modeling:
RPN Calculator

* Introduction to Design Patterns

Object-Oriented Approach

Object-Orientation

Most of the methods used in software development houses are based on a
functional and/or data-driven decomposition of the systems. These approaches
differ in many ways from the approaches taken by object-oriented methods
where data and functions are highly integrated.

Object-oriented systems development is a way to develop software by
building self-contained modules or objects that can be easily replaced, modified
and reused. It depicts the view of real world as a system of cooperative and
collaborative objects. In this, software is a collection of discrete objects that
encapsulates data and operations performed on that data to model real world
objects. A class describes a group of objects having similar structures and similar
operations.

Object Oriented Philosophy is very much similar to real world and hence is
gaining popularity as the systems here are seen as a set of interacting objects as
in the real world. To implement this concept, the process-based structural
programming is not used; instead objects are created using data structures. Just
as every programming language provides various data types and various variables
of that type can be created, similarly, in case of objects certain data types are
predefined. (Nath, 2014 — Lecture Notes on Object-Oriented Methodology)

Object-Orientation

The object-oriented approach allows better organization, versatility and reuse of source
code, which facilitates upgrades and improvements in the programs. The object-oriented
approach is characterized by the use of classes and objects, and other concepts that will
be clarified below.

* Classes are kinds of automakers objects that define its characteristics such as
which functions are capable of performing and which attributes the object has.
This type of programming allows the user to solve problems using real world
concepts.

* Object is an instance generated from a class. An object is identified from the
methods and attributes it has.

* Encapsulation is the act of hiding from the users the internal processes of an
object, class or method.

Methods are functions that object can perform.
Attribute is everything an object has as a variable.

Object-Orientation
Class, Object and Encapsulation

#ifndef STACK H #ifndef REAL_H
##define STACK H ##define REAL H
class Stack class Real
{ {
public: public:
Stack () ; Real (double _vwval);
~Stack(); ~Real () ;
void push(double _n); Real sum(Real _n);
double pop(); Real sub(Real _n);
bool isEmpty(); Real mul (Real _n);
void show(); Real div(Real _n);
private: private:
int m_top; double m_value;
double *m_elems; };
}i
#endif #endif

Object-Orientation

Class, Object and Encapsulation

#ifndef STACK H
#define STACK H

class Stack

{

public:
Stack () ;
~Stack();
void push (double
double pop();
bool isEmpty();
void show();

private:
int m_top;
double *m elems;

};

#fendif

_n);

#ifndef STACK H
#define STACK H

#include "real.h"

class Stack

{

public:
Stack();
~Stack () ;
void push (Real
Real pop();
bool isEmpty();
void show();

private:
int m_top;
Real* m elems;

};

#fendif

_n);

#ifndef REAL H
#define REAL H

class Real

{

public:
Real (double _vwval);
~Real () ;
Real sum(Real _n);
Real sub(Real _n);
Real mul (Real _n);
Real div(Real _n);

private:

double m_value;

};

#endif

Object-Orientation

The object-oriented approach allows better organization, versatility and reuse of source
code, which facilitates upgrades and improvements in the programs. The object-oriented
approach is characterized by the use of classes and objects, and other concepts that will
be clarified below.

* Inheritance (and polymorphism) is a feature that allows a given class to inherit
the characteristics of another class. That is, the descendant acquire all methods
and attributes of the parent class.

Methods are functions that object can perform.
Attribute is everything an object has as a variable.

Object-Orientation
Inheritance and Polymorphism

#ifndef REAIL_H
##define REAL H

class Real

{

public:
Real (double _wval);
~Real () ;
Real sum(Real _n);
Real sub(Real _n);
Real mul (Real _n);
Real div(Real _n);

private:
double m_value;

};

#fendif

#ifndef COMPLEX H
#define COMPLEX H

class Complex

{

public:
Complex (double _re,

double _im);

~Complex () ;
Complex sum (Complex
Complex sub (Complex
Complex mul (Complex
Complex div (Complex

private:
double m_real;
double m_imag;

};

#endif

Object-Orientation

Inheritance and Polymorphism

#ifndef REAIL_H
##define REAL H

class Real

{

public:
Real (double _wval);
~Real () ;
Real sum(Real _n);
Real sub(Real _n);
Real mul (Real _n);
Real div(Real _n);

private:
double m_value;

};

#fendif

#ifndef COMPLEX H
#define COMPLEX H

class Complex

{

public:
Complex (double _re,
double _im);
~Complex () ;

Complex sum(Complex
Complex sub (Complex
Complex mul (Complex
Complex div (Complex

private:
double m_real;
double m_imag;

};

#fendif

#ifndef NUMBER_H
#define NUMBER H

class Number

{

public:
Number (int _type);
~Number () ;
Number sum (Number _
Number sub (Number _
Number mul (Number _
Number div (Number _

private:
int m_type;

}i

#endif

Object-Orientation

Inheritance and Polymorphism

#ifndef REAL H
##define REAL H

#include "number.h"

class Real Number
{
public:
Real (double _val);
~Real();

Number sum (Number
Number sub (Number
Number mul (Number
Number div (Number

private:
double m_value;

};

#fendif

#ifndef COMPLEX H
#define COMPLEX H

#include "number.h"

class Complex Number

{

public:
Complex (double _re,

double _im);

~Complex () ;
Number sum(Number _n);
Number sub (Number _n);
Number mul (Number _n);
Number div (Number _n);

private:
double m_real;
double m_imag;

};

#fendif

#ifndef NUMBER_H
#define NUMBER_H

class Number

{

public:
Number (int _type);
~Number () ;
Number sum(Number
Number sub (Number
Number mul (Number
Number div (Number

protected:
int m_type;
}i

#fendif

n);
n);
n);
n);

Object-Orientation
Inheritance and Polymorphism

#ifndef REAL H
##define REAL H

#include

"number.h"

class Real : Number

{
public:

Real (double _val);

~Real();

Number
Number
Number
Number

private:
double

};

#fendif

sum (Number
sub (Number
mul (Number
div (Number

m_value;

_n);
_n);
_n);
_n);

#ifndef COMPLEX H
#define COMPLEX H

#include "number.h"

{
public:

~Complex () ;

Number sum (Number
Number sub (Number
Number mul (Number
Number div (Number

private:
double m_real;
double m_imag;

};

#fendif

class Complex : Number

Complex (double _re,
double _im);

_n);
_n);
_n);
_n);

#ifndef NUMBER_H
#define NUMBER_H

class Number

{

public:
Number (int _type);
~Number () ;
virtual Number sum (Number
virtual Number sub (Number
virtual Number mul (Number
virtual Number div (Number

protected:
int m_type;
}i

#fendif

O O oo
~

. N

~e

~e

UML
Unified Modeling Language

UML p
Unified Modeling Language

UML is an industry-standard language for:

Specifying Visualizing Constructing Documenting

& A

Business Modeling Communications

Software Components

UNIFIED 0
MODELING
LANGUAGE

Unified Modeling Language

Definition:

It is a graphical language for visualizing, specifying, constructing
and documenting the artifacts of an object-oriented computing

system.

UNIFIED 0
MODELING
LANGUAGE

Unified Modeling Language

Definition:

It is a graphical language for visualizing, specifying, constructing
and documenting the artifacts of an object-oriented computing

system.

Advantages:

- Fast, efficient and effective development of programs;

- It reveals the desired structure and behavior of the system;

- It allows the visualization and control of the system architecture;

- Better understanding of the system under construction and risk
management.

UML
History

(State Charts) Harel 1987

(o0sA)

(Ada/Booch
Booch
(_RDD
1990 Y Wirfs-Brock ShlaerMellor
Booch "91
Methodologies O0SE
proliferate = Jacobsen Gibson/Goldberg Coad/Yourdon
Booch '93 Euzloh IS
- Coleman -
Booch (OMT '94 [OOSE94 Martin/Odell
Rumbaugh ¥ ¥
1995 OOPSLA '95| UM 0
Mature practice "3 amigos” UML 0.9
Y Graham Henderson-Seller
Team
Fusion OPEN/OML g@
Open-Group

1997 Accepted by OMG Nov. 97 [UML 1.1

Standardization
Accepted by 1SO kL2000 | UML 1.3
Published Nov. 2000

UML 1.5

2005(_UML 2.0
2007(_UML 2.1.2

2008 | UML 2.2

March 2003

2005

Language
proliferate

Colemanu.a.

l!_...Ir'nifiec:l
rocess
RUP, OEP

Executable
UmML
((xumL)

(SysML 1.1) (BPMN 1.1)

MODELING
LANGUAGE

2005

TIIE. Uwirien MoneLING
LasGuace User GUIDE
Second Edifion

o LW I —l""-t
LR

UML
Views (Architecture of an OO System)

-
5 |
-\ / = ™ //f"
e Design View Implementation View]

Classes, interfaces,
collaborations

>+
|se cases ; Components
i.,,_/??’ % Use Cas‘ew

| = =7'

@ Process View Deployment View

Active classes Nodes

UML Building Blocks

Things:
The basic entities in the model.

Relationships:
Tie things together.

Diagrams:
They are graphs of things and their relationships.

Building Blocks

Things in UML

Class Interface Message
Window O displays
_—
o_rigin IApplication
S1z8 State
open() Active Class
I
close() EventManager Standby
move()
show()
suspend() (b)
level()

Component Package

window.java COIE_‘ti"_”i‘t-iO“ |

e . Rules of contract
/ Chain of \
' responsibility
RS - (c)
Node
Use Case Note
Server
returns
Makes request copy of it

(a) (d)

Building Blocks

Things in UML

Active Class Component 'ﬂt“’f’,'fac'? — Node
Class (processesithreads) (replaceable part, (vc_':’ : ;c fon ofexternally computational
. realizes interfaces) ¥/sible ops) resource at run-time,
Hi“tit‘”'l 1'.\ ent \]gt processjngpuwer
std 1d thread w. memory)
grade time Course.cpp
changeLevel() Start IGrade
setGrade() suspend() [<<interface
getGrade() stop() orade
setGrade()
getln ade()

Manage Coursé,
\ Registration /

~
s

Use Case Collaboration

(chain of responsibility

shared by a web of interacting objects,
structural and behavioral)

(a system service
-sequence of
Interactions w. actor)

Building Blocks

Things: Classes in UML

How to represent
this class in UML?

#ifndef NUMBER_H
#define NUMBER_H

class Number

{

public:
Number (int _type);
~Number () ;
virtual Number sum (Number
virtual Number sub (Number
virtual Number mul (Number
virtual Number div (Number

protected:
int m_type;
}i

#fendif

o O O O
Ne Neo Ne N

Building Blocks

Things: Classes in UML

Number Number
m_type # m_type:int
sum(_n) +sum(_n:Number) : Number
sub(_n) +sub(_n:Number) : Number
mul(_n) + mul(_n:Number) : Number
div(_n) +div(_n:Number) : Number

#ifndef NUMBER_H
##define NUMBER H

class Number

{

public:
Number (int _type);
~Number () ;
virtual Number sum (Number
virtual Number sub (Number
virtual Number mul (Number
virtual Number div (Number

protected:
int m_type;
}i

#fendif

o O O O
Ne Neo Ne N

Building Blocks

Things: Classes in UML

Number Number
m_type # m_type:int
sum(_n) +sum(_n:Number) : Number
sub(_n) +sub(_n:Number) : Number
mul(_n) + mul(_n:Number) : Number
div(_n) +div(_n:Number) : Number

Real Complex

m_value —m_real:double
sum(_n) —m_imag:double
sub(_n) + sum(_n:Number) : Number
mul(_n) + sub(_n:Number) : Number
div(_n) + mul(_n:Number) : Number

+ div(_n:Number) : Number

#ifndef NUMBER_H
##define NUMBER H

class Number

{

public:
Number (int _type);
~Number () ;
virtual Number sum (Number
virtual Number sub (Number
virtual Number mul (Number
virtual Number div (Number

protected:
int m_type;
}i

#fendif

o O O O
Ne Neo Ne N

Building Blocks

Relationship in UML

Association: Set of
links between objects.

Aggregation Composition

< 4

* 0..1

empregado empregador

Dependency: Change (Generalization: Used Realization: A

to one thing will affect for 1nheritance. specification of a
the other. Encodes “IS-A” contract between two
relationship. entities.

Building Blocks

Relationship in UML

1. Associations
Structural relationship that describes a set of links, a link being a connection between

objects. variants: aggregation & composition

2. Generalization
a specialized element (the child) 1s more specific the generalized element.

3. Realization

one element guarantees to carry out what is expected by the other element.
(e.g, interfaces and classes/components, use cases and collaborations)

4. Dependency
a change to one thing (independent) may affect the semantics of the other thing (dependent).

(direction, label are optional)

Stack

m_top:int
m_elems:*INumber

push(_n:INumber)
pop() : INumber
isEmpty() : bool

show()

How are these
classes related?

How to represent these
relationship in UML?

Building Blocks
Relationship: between Classes UML

INumber

m_type:int

+sum(_n:INumber) : INumber
+ sub(_n:INumber) : INumber
+ mul(_n:INumber) : INumber
+div(_n:INumber) : INumber

Real

m_value

Complex

sum(_n)
sub(_n)
mul(_n)
div(_n)

—m_real:double
—m_imag:double

+ sum(_n:INumber) : INumber
+ sub(_n:INumber) : INumber
+ mul(_n:INumber) : INumber
+ div(_n:INumber) : INumber

Stack

m_top:int
m_elems:*INumber

Building Blocks
Relationship: between Classes UML

INumber

m_type:int

push(_n:INumber)
pop() : INumber
isEmpty() : bool
show()

<@

+ sum(_n:INumber) : INumber
+ sub(_n:INumber) : INumber
+ mul(_n:INumber) : INumber
+div(_n:INumber) : INumber

/N

Real

m_value

Complex

sum(_n)
sub(_n)
mul(_n)
div(_n)

—m_real:double
—m_imag:double

+ sum(_n:INumber) : INumber
+ sub(_n:INumber) : INumber
+ mul(_n:INumber) : INumber
+ div(_n:INumber) : INumber

Building Blocks

Diagrams in UML

User Requirements Analysis Design Code
Use Case Component [< Class > State
Diagrams Diagram Diagram > M_achme
A A,D A,D,P Diagram p p
F k7
N y ~L]
Sequence |, Source
Use Cases \] > Diagram e
UA D,P
v
Activit Deployment Collaboration
CRC Model . Diagrar‘rq Diagram Diagram
UA AD DP
::r:terface Technical) Data
ow Prototype Diagram
Diagram A D D,P
A U = Users
Prototype A = Analyst
of User P D = Designers
Interface |y A P = Programmers

CRC: class, responsibility and collaboration

Object Oriented Software Modeling

Object Oriented Modeling

A model is an abstraction of something for the purpose of understanding it
before building it (Rumbaugh, 1994). Because, real systems that we want to
study are generally very complex.

In order to understand the real system, we have to simplify the system. So a
model is an abstraction that hides non-essential characteristics of a system
and highlights those characteristics, which are pertinent to understand it.

A model can also be understood as a simplified representation of reality. A
model provides a means for conceptualization and communication of ideas in a
precise and unambiguous form.

The characteristics of simplification and representation are difficult to
achieve in the real world, since they frequently contradict each other. Thus
modeling enables us to deal with the complexity of a system.

(Source: Nath, 2014 — Lecture Notes on Object-Oriented Methodology)

Object Oriented Modeling

Requirements

Analysis

Design

Programming

System

Model

rl

I_\I(

Requirements
Use Cases Descriptions
Use Cases CRC
Diagrams Model
Tests of
Use Cases p—>
Settings

Interation
[> Diagrams ;L
Class Crehs
Diagrams
State
I% Machines 1

Diagrams

Object Oriented Modeling

Requirements

Analysis

Design

Programming

System

Model

rl

I_\I/

Requirements

Use Cases Descriptions
Use Cases CRC
Diagrams Model

K

rI

Tests of
Use Cases
Settings

—>

Interation
[> Diagrams w
Class ot
Diagrams
State
% Machines 1

Diagrams

Object Oriented Modeling

* Requirements
- List of requirements / needs
- User Interface

* Object Oriented Analysis
- Use Cases
- Robustness Diagram

* Object Oriented Design
- Sequence Diagram
- Class Diagram

* Object Oriented Programming

Object Oriented Modeling
of a RPN Calculator

Requirements

It should be possible to insert several numbers on the calculator. The numbers
can be integers, real and complex. The real numbers have two decimal places
and the complexes also two decimal places in the real and imaginary parts.

It should be possible to perform the four basic operations: addition, subtraction,
multiplication and division.

Operations must be carried out with the last two numbers entered in the
calculator. Therefore, an operation requires that the users enter with at least
two numbers. The result of each operation is a new number which replaces
the two numbers used in the operation. The remaining of the numbers is
unchanged.

It should be viewed only the last four numbers entered.

Object Oriented Modeling
of a RPN Calculator

User Interface

Sketch of the program graphical interface.

PLOT SYMBOLIC { %

8 9 -
STAT UNITS
2 (5]

LBRARY ~ EQUB <c»»

2 3

y =l T A
SPC

There are missing in the sketch the following buttons:

-enter

- delete the last entered number

- Switching to different type of number

Object Oriented Analysis
of a RPN Calculator

RPNCalculator

Choose the
number type
Insert a
number
Addition

A
Perform an Z)
operation
Y, L
Multiplication

Remove the
last number

Quit the
Program

Use Cases

Number

Complex
Number

User

I

i

Object Oriented Analysis

of a RPN Calculator
Use Cases

- Choose the Number Type

May be an option held at the beginning of program execution, which will define the
behavior of the calculator. During program execution, the user can also press a button to
choose the type of number that he wants to work. The numbers that are already in the
calculator should be automatically converted to the new format.
- Enter a number

The use case "Enter a Number" is initialized when the user presses a button corresponding
to the number that he want to enter on the calculator. If the number is of type Integer or
Real it just click the button with the number, but if the type is complex it must first insert the
real part and then, after a space, the imaginary part.
- Perform an Operation

This use case starts when the user presses the corresponding button operation he wants to
accomplish. Any operation is performed with the last two numbers entered in the calculator,
but the result of course depends on the operation.
- Remove the last number

Removes the last number without performing operations. The previous becomes the last.
- Quit the Program

This use case starts when the user clicks the close box of the program in the main
application window. The values that are in the calculator are lost.

Object Oriented Analysis
of a RPN Calculator

Robustness Diagram

A robustness diagram is basically a simplified UML collaboration diagram.

A initial reading of the use cases suggests that following will be part of the system:

- A single entity object representing the current calculator that the program is
working with (RPN).
- An arbitrary number of entity objects, each representing one of the numbers

(Number) that is in the current calculator. This number can still be: integer
(Integer), real (Real) or complex (Complex).

- A special data structure to store the numbers, where the last element added to
the structure must be the first one to be removed. Therefore, the structure that is
most suitable for this application is the stack (Stack).

- A boundary object representing the interface between the calculator system and
the human user (RPN_GUTI).

- A controller object that carries out the use cases in response to user gestures on
the GUI (RPNController). (For a problem of this small size, a single controller is

sufficient.)

Object Oriented Analysis
of a RPN Calculator

Robustness Diagram
The various use cases work with these objects, as follows:

- Enter a number involves taking the new user input, and then tell the RPN object
to add a new number with this information in its data structure.

- Perform an operation involves removing the last two numbers stored in RPN
object, perform the operation with these numbers and display the result on the
screen, which is added as a new item in your collection.

- efc...

User

RPNController

O

RPN_GUI

@

RPN/Stack Number

Object Oriented Design
of a RPN Calculator

Sequence Diagram

Each of the use cases discovered in the analysis of the system will be realized by
a sequence of operations involving the various objects comprising the system:

Object Oriented Design
of a RPN Calculator

Sequence Diagram

qui:RPN_GUI ctrl:RPNController rpn:Stack
| | |
0 I [
| [
setNumberType(string) 1 |
B setType(string) :
] |
< I
|
|
cleanStack() |
|
< | [
[
I
create(string) |
< ..
I
I
[
[
|
I

Object Oriented Design
of a RPN Calculator

Sequence Diagram

gui:RPN_GUI ctrl:RPNController num:Number rpn:Stack
| | | |
i [| |
[| |
insertNumber(string) [| |
P convertStrToNum(string) : :
] | |
< | |
| |
| |
new() | |
|
|
DR, |
|
|

push(Number)

——

Object Oriented Design
of a RPN Calculator

Sequence Diagram

qui:RPN GUI ctrl:RPNController num:Number rpn:Stack

H | | |
| |
performOperation(string) : [|
sum() P getop(Number,Number) : :
sub() «— | |
mul() | |
div() pop() ! '
S

- s Jrrrrmme e
[[
pop() | |

|

oo —————— Iblj
| |
| |
new() > ! I
|
-+ eerenenenen e I_| I
| |
| [
H |_._| | I
| 1 | I

Object Oriented Design
of a RPN Calculator

Class Diagram

RPNApplication

!

RPNController

!

RPN_GUI

LY

% Integer
RPN O_ Number |
L — Real
Stack % Complex

Introduction to Design Patterns

Design Patterns

- Identification of Objects (difficult task)
- Techniques for System Decomposition in Objects

- Identification of non Obvious Abstraction
Design Patterns

Elements of Reusable
Object-Oriented Software
Erich Gammall —
Richard Helm

Ralph Johnson
John Vlissid

—

-~
=
At
=
&
3
=
_“
=
m
o
&
1,
=
&
=
m
§ 723
5
=
=
=
L
(o
¥
-
&
“
=
Z
&
o
o
m
b

Forewerd by Grady Booch

ol

[Aeiracs Factory

[E] Facane

Prowy

Memento
Memento s Adapter
o [e (] o o R i o
Typa: Betnicenl [roperation] Type: Stnctural Type: Struckural
Bridge Fhywaight [E] sroteton
m"‘:&.‘ ancapHiGh " 3 Wt 1 fe: What it is:
e ating o, capture -
m Do - and axtamalza 6n abjects inamal state | :mﬂ ,I,":;‘m: mrmltlfls ;’“;::ﬂ m“g’:'m'mmﬂ:i’r
Chain of Respansibiley Swategy 50 that the chiject can b restonsd 1o this Originator ! classas work togethar that caukdnt ey bl
stabe later, I Adaptes atheraise bacause of incompatink
Commard Temgiata Mathod Cotate L [edaptee réarfaces.
+saMeman T Mamania)
ki i e 7]
[E] mecoesicr
successor Ghiain of Responsibility Observer Subjoct notifes. [cinlertacan E’:_ Bridge Abstract Factory
Type: Behaviorsl Type: Behavioral bbb ninat [+updal winleriaes Type: Sinsctueal
ype: [+darachiin o : Ohsaner o] ; 5 Yoo Type: Croational
What it is: What it s PP What it is: :
Avaid w:,...-gu.g ender of & requast o Define a one-lo-many depandency between +oparationimg) M:m e What it Is:
it recaiver by giving mos than ane obisel objects 5o that when one object changes gemanlation &0 MaL ive two can very Pronddes an intarface far creating
& chance b handle the request. Chan B stale, all its dependents are nalified and rdependently families of related or dependant
recaiving obiects and pass the regquest updated automalicaly. nqx'l::;zn spaciying ther
|mnnuuum..-|| |mm.u...¢..«;| alang the chia untl an object hardies it chsarves : : canc .
Per— I]
[remdeRenet) | [Fhendremest) | [ulfecteian | | |
[+updatz() | [I l
L |
<inioriaces ;
| ciem | ivorer | Command State T Composite Builder
ran
Type: Behavioral Type: Banavioral mw Type: Structural Typa: Creational
Hremave(in ¢ - Camponant)
hat it is: what bs: Teind Whatitis: Whet ft ls:
Encapsulate a request as an cbject, Allw an abject fo alter &5 behavior wnen Compass abjects ma inse svmuLz;‘ o Saparate the constructian of a
axecu1el theen chany b represent o s
| e R AN | S
AN requests, and suppor undoatie aperatians, ‘abjects uniformiy. nrocess can create differant
representatons.
I Receiver | |l:o|u:n-ﬁrm-|lnd| | Laaf Jop.:‘m, .
L atc(in ¢ : Companert,
[Fexecuteq) [Feremmtond) |
LgetChiciin i - i)
Interpreter Strategy Decorator Factory Methad
Type: Behavicral Typy: e Typa: Stnuchual Type: Creational
- b What lt is What it is:

What it s
Given a language, defing represantaton

7

I«mrprultrcnm i

iﬂnmmu + Context I

for s ‘aloryg with an narpreer
that uses B representatian o Interprat
santences In th lnguage.

Deafing & faniy of algorithma,

aach one, and make them
inerchangestita. Lats the aigorthm vary
indepanderdy fram
clients thal use it

Atlach additional respansilities t an

. Pronic 3 astie

Dafing an interface for craating an

wirlartacas
Aggrigate
[+creatsiterator) omw]

Iterator
Type: Behanvioral

What it is:
Provide & ity 1o sccess he elmnls of

[+ cretalieraton) : Corext |°ml[l Cantext

infomms.

expoaing its undertying mwwnlsho«

Mediator
Type: Bebavicral

What it is:

Dafirss an object thal ancapsulales how 8
el of objects interacl. Promotes loose
coupling by keaping chijects rom relarring
1o exach olher axphcilly ard i lets you vary
theeir inderactions independenty.

Template Method

Define. Ihu skeleton of an aigarithm in an

aperation, deferring some sleps 1o subclassss.

Lets subcissses redufine ceriain steps
af an slgorithm without changing the
algarithm's structure.

Visitor

Type: Behavioral

[istEamentin s mmw

What it is:
Represent an cperation o be

periarmed cn the elements of an
object stnucture. Lets you define a|
new aperatian without changing
the classes of the elements an
which it cperates.

[+visilElamantAdin a
[+visilElamaniBiin b mm“ﬂ]

oot Iy clgect. bul bl subclasses decide which

dezsing lor gutending class ko instanliale. Lets a class defer
unctianalky. insiantiation ko subcissses.
Facade Prototype
Type: Structural Type: Creaticnsl
What it is: What it is:
Prowvide a unified intarface 1o 8 set of Specify the kinds af obiects (o creale
riterfaces in & subsystem. Defines 8 high- | using a ummm.al rntance, and
el interface that makes the subsy criste ¥ g this
i (o use. pralotype.
Flyweight Singleton
Type: Structural Typa: Craatianal 2

['static uniquelnstance

What it is: What it is: [singletonData.
Use sharng fo suppert large numibers of Ensum & dass anly as one instance and g —
fire grained objects efficensy. provide & giobal point of access 1o it |+SinglatonCpemticnd)

+accaptiny : Viailor)

rrow |
saving state ‘ Adapter |
Builder of devation P
voiding
creating

composites

adding composed .
. g
to objects

Decorator sharing

; defini
ading. traversais the chain
grammar
changing skin
versus guts
adding
shari operations | Chain of Res ibili I
s!rmng erpreter ponsibility
r.-'rmu.' !

ay shari symbols
mr;cng Mediator
complex
NC|
e
Soin
algorithm’s

s
M Template Method ’—/ often ”599\

configure factory
dynamically implement using

Factory Meﬁw F

: inal
instance
SJ\"Q‘E /:

instance

Singleton

Figure 1.1: Design pattern relationships

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gammal
Richard Helmi

Ralph Jal

John

ylis_siél

rid by Gracly Booch

il |

*

=
=)
=
o
&
=
=
s
"
=
=
=
m
th

