

IRSES Project **TUG - Graz, Austria** June 2014

Computer Graphics for Engineering

Luiz Fernando Martha

André Pereira

Speakers A little bit about us...

Research Group in Brazil

About us...

Course Schedule and Contents

Course at TUGraz

1	MON 16/06	8:15 - 12:00	 Introduction to Computer Graphics for Engineering. Development Environment using QT. Development of a calculator with RPN in C/C++. Object Oriented Modeling of a calculator with RPN. Treatment of Colors. Two-dimensional Visualization with OpenGL. Standard/graphic library OpenGL. Programming in an event driven iterative graphical environment. Paradigms of signals & slots of Qt. Geometric Transformation in 2D.
2	TUE 17/06	8:15 - 12:00	 Digital Representation of curves. Mouse Events on canvas. Introduction to Computational Geometry. Tessellation of 2D regions. Predicates of computational geometry: proximity tests e points inclusion. Algorithms for line-line intersections. Exact and Adaptive arithmetic. Geometric Modeling (2-manifold and non-manifold). Topological data structures. Half-edge data structure.
3	WED 18/06	8:15 - 12:00	 Finite element mesh generation: mapping algorithms, advancing front and Delaunay triangulation. Management of modeling attributes. Computational simulations with finite and boundary elements. Introducing a 2D modeler with mesh generation and attributes. Visualization of finite and boundary element results (2D).

Course at PUC-Rio

1	13 - 16	Introducing the Development Environment - Visual Studio 2008 e Qt. Development of a simple program: addition of two numbers	
2	13 - 16	Introduction to Computer Graphics for Engineering. Development of a calculator with RPN in C/C++.	
3	13 - 16	Introduction to Object Oriented Programming. Object Oriented Modeling of a calculator with RPN.	H
4	13 - 16	Treatment of Colors. Two-dimensional Visualization with OpenGL. Standard/graphic library OpenGL.	V p
5	13 - 16	Programming in an event driven iterative graphical environment. Paradigms of signals & slots of Qt. Geometric Transformation in 2D.	н р
6	13 - 16	Mouse Events on canvas. Digital Representation of curves.	Н
7	13 - 16	Introduction to Computational Geometry. Tessellation of 2D regions. Predicates of computational geometry: proximity tests and points inclusion.	м е Н
8	13 - 16	Algorithms for line-line intersections. Exact and Adaptive arithmetic.	
9	13 - 16	Geometric Modeling (2-manifold e non-manifold). Topological data structures. Half-edge data structure.	
10	13 - 16	Finite element mesh generation: mapping algorithms, advancing front and Delaunay triangulation.	
11	13 - 16	Management of modeling attributes. Computational simulation with finite and boundary elements. Introducing a 2D modeler with mesh generation and attributes.	
12	13 - 16	Visualization of finite and boundary element results (2D).	

Homework 1: Calculator with Qt Homework 2: Two-dimensional Visualization with Qt and OpenGL performing transformations Homework 3: Library of graphic primitives and collecting curves Homework 4: Geometric modeler with line-line intersections and explicit creation of regions Homework 5: Mesh Generation

Aim and Scope

Introduction of concepts and algorithms of **Computer Graphics** for students that intend to **develop** and **customize** technical and scientific graphics software.

- » Fundamentals of Computer Graphics
- » Tools and Libraries
 - Creation of Simple Apps using Visual Studio and Qt.
 - Object Oriented Program in C++: graphic primitives (points, curves, polygons).
 - OpenGL with examples of visualization of graphic primitives.
 - Introduction to Computational Geometry: curve libraries.
- » Geometric Modeling
 - Motivation: graphic modeler x geometric modeler.
 - Topological data structure.
 - Applications with the Half-edge data structure.
- » Mesh Generation
 - Strategies and algorithms.
 - Usage of libraries.
- » Visualization
 - Post-processing of finite and boundary element results.

Mỹ M2D															
File	View	Set	tings	Help											
R	Ð	ø	Ф		Х	Undo	Redo	\mathbb{N}	翻	Attribu	ites	ViewMesh	Run		
ø															
10															1
V				\rightarrow	1										
× n				4											1
•				4											
٢															1
•															1
															<u>_</u> 2
				4											́с.
				4											1
				, t											
				\Box											1
x = 1.00 y = 1.00															

Mesh Generation

Mesh Generation

Mesh Generation

Attribute Management

Attribute Management

Visualization of Results

Visualization of Results

Questions?