
CSBase: A Framework for Building Customized Grid Environments

Maria Julia de Lima, Cristina Ururahy, Ana Lúcia de Moura, Taciana Melcop, Carlos Cassino,
Marcelo N. dos Santos, Bruno Silvestre, Valeria Reis, Renato Cerqueira

Tecgraf/PUC-Rio
Rio de Janeiro, Brazil

csbase@tecgraf.puc-rio.br

Abstract

This paper describes CSBase, a framework that allows
the development of customized grid environments. CS-
Base provides end-users with a simplified access to grid re-
sources and applications. Although all CSBase instances
share some common services, such as user and algorithm
management services, each instance has its own web inter-
face and specialized applications and services. CSBase is
based on the experience gathered from projects developed
by our research group in collaboration with industrial part-
ners. This paper also describes some of these projects.

1. Introduction

The coordinated use of computational resources is an
ever-growing need in several companies. In some corpo-
rations, the diversity of computer architectures and applica-
tions, as well as spread data, hamper resource sharing and
cooperation. This kind of scenario is very similar to the one
addressed by grid computing infrastructures [7].

A typical grid infrastructure, such as Globus [6], pro-
vides software tools to help share computing power, data-
bases, and other resources across different administrative
domains. Although such infrastructure is usually applied to
integrate resources from different institutions, they can also
be used to share resources within the same institution.

Grid middleware provides general mechanisms to inte-
grate resources and to present them to their end-users. This
is a convenient feature of the current grid middleware, since
it allows its (re)use in different situations. However, this
general approach usually involves complex user interfaces.

This paper presents CSBase, a framework that supports
the development of customized grid systems. CSBase of-
fers a friendly user interface that can be seamlessly inte-
grated to the users’ routine. Originally, CSBase was de-
signed to support the implementation of grid environments
within the same institution. As in other grid infrastructures,

a CSBase instance provides facilities for resource manage-
ment and application execution in a distributed and hetero-
geneous computing environment. However, each instance
of CSBase has its own security model and sets of services
and applications.

All these facilities are presented to the end-user through
a project-centric web interface, which represents a virtual
desktop where data files are organized per project. Through
this desktop, the user can start and monitor the execution
of tasks in the grid. Since an instance of CSBase is cus-
tomized to some specific use, the web desktop also pro-
vides pre-processing and post-processing applications. Pre-
processing applications prepare the input data that will be
used by a task submitted to the grid, while post-processing
applications visualize the task results.

CSBase resulted from two projects developed by Tec-
graf1 in partnership with Petrobras (Brazilian Oil Com-
pany). In the first project, we built and deployed an end-user
environment that integrates several seismic data-processing
algorithms. Although involving a different application do-
main, the second project required similar grid facilities.
This motivated us to build the CSBase framework, so we
could easily reuse common facilities in similar projects. To
this day, we have already deployed 3 CSBase instances and
two other systems are under development.

This paper is organized as follows: Section 2 provides
an overview of CSBase, describing its architecture and dis-
cussing how to customize it to generate a new instance. Sec-
tion 3 presents some grid systems implemented with CS-
Base. Then Section 4 discusses related work, and Section 5
concludes this paper.

2. CSBase

CSBase provides a front-end user interface that abstracts
the complexities of a grid computational environment. This

1Tecgraf/PUC-Rio – Computer Graphics Technology Group – is one of
the laboratories from PUC-Rio’s Computer Science Department.



front-end interface allows users not only to access grid re-
sources but also to add new ones. Users can extend the re-
sources of a grid environment by installing algorithms —
domain-specific non-interactive programs that run on re-
mote execution hosts. An execution host is a machine that
is connected to the grid environment, providing both execu-
tion and monitoring services.

An algorithm execution facility allows users to request
the execution of a selected algorithm on a remote host.
When the execution of an algorithm ends, CSBase notifies
the user who requested it. Algorithm monitoring facilities
also allow users to monitor an algorithm execution and, if
needed, to interrupt it.

To install a new algorithm, it is only necessary to define
the supported platforms and to provide the algorithm bina-
ries and a configuration file that specifies the algorithm’s pa-
rameters. When a user installs a new algorithm, it is dynam-
ically integrated to the environment. Based on the configu-
ration file, CSBase builds the user interface through which
the algorithm’s parameters are provided, with no need for
recompilation. Figure 1 shows the algorithm execution in-
terface and an example of a dynamically built parameter in-
terface.

Figure 1. Algorithm Execution Interfaces

Users can monitor CPU and memory usage in the execu-
tion hosts. The monitoring information collected from those
hosts can be presented both textually and through several
types of graphs and charts, as shown in Figure 2. Clusters
and host groups can be monitored as a whole. Based on the
presented information, the user can select an adequate ma-
chine for the execution of an algorithm. This selection can
also be delegated to the system, which will base its decision
on the monitoring information gathered from the execution
hosts.

The user of a CSBase instance organizes her working

area by creating projects: hierarchical structures that store
related user files. By arranging her work in projects, the
user is able to define different working spaces. A user
project can be either private to its creator or shared by differ-
ent users. CSBase also offers a publishing facility through
which an individual user’s file can be made available to
other users.

An important feature of the framework is its access con-
trol mechanism. Within a CSBase instance, storage ar-
eas, algorithms, and execution hosts are protected against
unauthorized access. User access rights are defined by spe-
cific permissions; the system administrator is responsible
for creating those permissions and assigning them to indi-
vidual users or user groups. Through the system administra-
tion interface, the administrator can perform tasks such as
adding new users to the system, creating and assigning ac-
cess permissions, and allocating storage space to individual
projects.

A CSBase instance offers most of its facilities through
customized applications, which are incorporated in the user
interface. Unlike algorithms, applications are interactive
programs that run within the CSBase instance, and thus can
use all its internal functions and resources. This means that
an application can access and modify user projects and their
contents, start the execution of a specific algorithm, or make
use of any other internal service.

The algorithm execution facility described earlier (Algo-
rithm Executor) is an example of an application the CSBase
framework provides to all its instances. The framework also
provides other applications, such as a simple notepad, an
HTML viewer, and file compression (ZIP) facilities. These
applications access files in the user’s project area.

The Algorithm Flow Constructor is another useful appli-
cation provided by the CSBase framework. This application
allows users to specify execution flows that combine the se-
quential and parallel execution of several algorithms. An al-
gorithm flow can be executed on a remote host like a regular
algorithm, with the adequate connection of its components’
output and input streams.

2.1. Architecture

A computational grid can spread over several geographic
locations. Each of them maintains a CSBase Server, sharing
resources locally. A central CSBase Server is responsible
for administrative tasks, maintaining a global administra-
tion data repository. All CSBase Servers have an equivalent
set of functionalities and each one maintains a user database
replica that is synchronized with the central CSBase Server
database. The user database replication permits user au-
thentication even when the connection to the central server
is unavailable.

Figure 3 shows a general view of CSBase architecture in



Figure 2. Monitoring Execution Hosts

Node
Daemon

Algorithm
(Fortran)

CORBA

N
F
S
/
C
S
F
S

Execution Host A

CSFS
Daemon

CORBA

Local File
System

Project
Area

Data Repository

CSBase
Server

RMI

Web Desktop Web DesktopWeb Desktop

CORBA

NFS /
CSFS

Node
Daemon

Algorithm
(C/C++)

CORBA

N
F
S
/
C
S
F
S

Execution Host B

CSFS
Daemon

CORBA

Local File
System

Algorithm
Repository

User
Data

NFS /
CSFS

Figure 3. CSBase Architecture

a single geographic location. The CSBase Server is com-
posed by a set of services. The Administration Service, for
example, is responsible for maintaining user-related data.
The Project Service allows the remote access to the project
area. There is also the Algorithm Management Service, E-
Mail Service, HTTP Service, and Login Service, among
others.

The Data Repository is a disk area where the main server
stores the user database, user project data, and the algorithm
repository. User database comprises user data and permis-

sions, stored in regular files. The project area stores a di-
rectory to each user project, holding regular files and direc-
tories, as well as description files and general information.
The algorithm repository constitutes a hierarchical structure
containing its documentation, a binary code for each execu-
tion platform, and a configuration file.

The Node Daemon runs in each algorithm execution
host. It has a CORBA interface that allows requesting the
execution of an algorithm and gathering monitoring infor-
mation on hosts and algorithms. Upon activation, the Node
Daemon registers itself to the CSBase Server. Regularly, a
CSBase Server requests host status information to the Node
Daemon. When a user requests the execution of an algo-
rithm, the CSBase Server forwards the request to the se-
lected execution host and starts monitoring the process un-
til completion (success, fail, or interruption). Node Dae-
mons run on Linux, AIX, SunOS, IRIX, Windows and on
PBS [10] clusters. On a PBS cluster, a Node Daemon runs
only on the server and uses the PBS infrastructure to request
and monitor process execution as well as to collect informa-
tion on the use of host resources.

Considering that traditional distributed file systems, such
as NFS, are not always suitable to the grid computing envi-
ronment [4], CSBase provides a data management infras-
tructure whose main purpose is to allow binary and data
files staging [2]. CSFS offers a remote interface to the exe-
cution host’s local file system. It is also a daemon process
and is collocated to every Node Daemon, allowing binary
and data files staging between the hosts and the data reposi-



tory. A remote client is able to contact the daemon to create
new files and directories, as well as to request a copy opera-
tion among different hosts. CSFS is an overlaid file system
designed for grid systems.

The Web Desktop is the end-user interface of CSBase. It
consists of a Java applet that is automatically downloaded
and started when the system’s URL is accessed. The typical
GUI looks like the desktop shown in Figure 4. On the left is
a hierarchical tree representing an open project and a table
containing file details of the selected directory. Although
the directory tree is similar to a regular file system, it con-
sists of remote files instead of local ones. On the right, the
installed applications are shown and can be executed, pos-
sibly manipulating remote files within the project area. At
the bottom, there is a text area used to communicate with
other users and to notify system events, such as to indicate
the completion of remote processes and the addition of new
Node Daemons.

Figure 4. An Example of the Web Desktop

2.2. Applying CSBase

CSBase is an object-oriented framework that developers
can customize to build new client/server systems by inher-
iting and instantiating classes in the framework. It is also
a run-time environment that provides the CSBase instances
with the basic functionalities of a grid.

One of the most important goals of CSBase is to facili-
tate the development of specific domain applications and to
enable their integration to the grid. The end-users of these
applications can thus benefit from all CSBase built-in facil-
ities, customized to their own needs.

The core of the CSBase framework is an infra-structure
layer for client/server foundation. At the client side, CS-
Base provides classes to develop new applications. At the
server side, CSBase offers a wide range of services and al-
lows the creation of new ones.

To support the development of an application, the frame-
work comes with a collection of classes that create stan-
dard frames, locate available services, handle notifica-
tions and events and many other facilities. An abstract
class, Application, defines hotspots for integrating con-
crete classes to the Web Desktop. Based on configuration
files, the Application Manager component instanti-
ates and installs applications in the Web Desktop without
the need to modify or recompile CSBase. The configura-
tion file of an application defines the concrete class, icons,
language and other resources used by this application. An-
other configuration file defines the list of applications to be
installed in a CSBase desktop.

Domain-specific applications may also require special-
ized services. At the server side, CSBase can be specialized
to provide new services. A CSBase service must imple-
ment its specific remote interface and extend the Service
abstract class, which provides common facilities, such as
service initialization and event logging.

Besides implementing the service itself, the developer
must also define a permission class that controls the access
to that service. As previously mentioned, each user holds
a set of permissions that enables him to perform operations
within each service.

The CSBase security model already defines permission
classes specifying common access policies. One of these
classes allows the creation of name/value pair attributes for
each permission. This facilitates the dynamic customization
of permission classes based on service needs. For instance,
when a user selects a node for executing an algorithm, the
Node Manager Service checks if this user holds a permis-
sion with the name of the machine as attribute.

CSBase services are accessed through a security-aware
proxy. When the user logs in, the ServiceManager in-
stantiates a proxy to each service and returns their remote
references to the client. Further remote calls are handled by
the proxy, which forwards them to the actual service imple-
mentation along with the identification of the user request-
ing the operation. The service implementation can than
check if the source of a request is a user who has an ade-
quate permission.

Finally, the CSBase instance developer must implement
the abstract class Server responsible for creating the ser-
vices available to the system. Currently, this must be done
programmatically but the next CSBase version will use a
configuration mechanism to create and install the services
dynamically.

CSBase’s extensibility is crucial to ensure the integration



of new applications and services to the core environment.
Requirements coming from different systems that already
use CSBase demand flexibility as an important design de-
cision. On the other hand, the CSBase development team
faces the challenge of adding new functionalities to the CS-
Base framework without impacting the development of CS-
Base instances. The next section presents three systems that
apply CSBase to build their own grid workbench. It shows
different scenarios and requirements of CSBase usage.

3. Framework Instances

This section presents three examples of CSBase in-
stances: WebSintesi, InfoPAED, and CSGrid. WebSin-
tesi and InfoPAED are maintained by Tecgraf/PUC-Rio and
Petrobras (Brazilian Oil Company). CSGrid is a research
project developed at Tecgraf/PUC-Rio and supported by
RNP (National Education and Research Network) through
the GIGA project [11].

The WebSintesi project integrates applications that sup-
port the analysis and processing of seismic data. These ap-
plications demand a high processing power, handling seis-
mic data files that comprise hundreds of gigabytes.

One example of these applications is TrackViewer, a
graphical application that manipulates seismic and well-
drilling data combining them into a single file that will serve
as the input for a seismic inversion algorithm [3]. Figure 5
shows a snapshot of the TrackViewer application2.

Figure 5. The TrackViewer Application

Another example of application integrated in WebSin-
tesi is VGE, an application that retrieves seismic and well
data from different storage systems, making the data ori-
gin transparent to the end-user. The user can select the data
through two distinct interfaces, a hierarchical data tree or a
georeferenced interface. The latter consists of a geographi-
cal map from where the user can locate which well or seis-
mic data she wants to retrieve. All retrieved data are stored
in her project area.

2The data presented here are fictitious.

We have developed around 15 services that specialize
the CSBase framework to WebSintesi. One of them is
the OpenSpirit Service, that uses the OpenSpirit integration
framework [9] to access data from any datastore with an
OpenSpirit Data Connector and make them available to the
user’s project area. Through another service, WebSintesi
has access to a Tivoli Storage Manager [14], to mount tapes
and download files into the project area.

WebSintesi’s first version was installed about two years
ago. Nowadays it has more than 1,000 users, about 30 algo-
rithms, and several Node Daemons installed in different ex-
ecution platforms. It has a central server located in Rio and
6 servers located in different Brazilian states. Connected
to the central server are 8 Node Daemons, running on 5
multiprocessed IRIX machines, 1 SP2 with 16 nodes, and
2 beowulf Linux clusters running PBS, one with 1,008 pro-
cessors and the other with 250 processors.

The InfoPAED project groups algorithms for contin-
gency recovery, for example processing information about
oil platform balance and stability. Differently from Web-
Sintesi, InfoPAED has very few services. Its first version
was installed a few months after WebSintesi. Currently it
has one central server, about 15 users, 15 algorithms, and
71 Node Daemons, running on 70 Windows machines and
1 AIX (Regatta).

CSGrid is another instance of CSBase. It is a research
project supported by RNP (National Education and Re-
search Network) through the GIGA project [11]. CSGrid
is a grid workbench for scientific applications in advanced
networks and is about to become the first multi-institutional
usage of CSBase.

As part of the CSGrid environment, we will provide fa-
cilities to build scientific applications that need support to
distributed visualization. These facilities are to be based
on different strategies for image rendering and load bal-
ancing among CSBase nodes, thus maximizing computa-
tional resource usage [1]. CSGrid can also be a guide for
people interested in extending CSBase and is available for
download at http://www.tecgraf.puc-rio.br/
csbase/csgrid.

Besides the three examples presented in this section,
there are two other CSBase instances under development
at Tecgraf.

4. Related Work

Globus [8, 6] comprises a set of services that can be
independently used to build distributed and heterogeneous
infrastructures. Globus, as CSBase, implements the main
components to create a computational grid environment, i.e.
security, data management, resource management and in-
formation service. These components can be joined to cre-
ate new applications in the grid. A set of development pack-



ages called Commodities Grid Kits [15] makes the grid ap-
plications development easier through the use of high-level
frameworks.

Globus user files are stored using a regular account,
which is determined by a mapping procedure from user
identities to user accounts. In CSBase, all files are stored
using a single account and the permissions scheme allows
a better granularity control over data privacy and sharing
possibilities between users.

Globus has been developed to address different kinds
of applications and services in the grid, and therefore it
presents a complex and extensive interface. The design and
implementation of CSBase has been driven by the needs
of specific applications, providing a lightweight system for
grid computing with specialized interfaces. In addition to
middleware services, CSBase also offers facilities to build
customized grid systems that provide their end-users with a
working environment integrated with the grid.

Condor [12, 13] is a resource management system for
computing intensive jobs. As well as CSBase’s algorithms,
Condor’s jobs must be able to run in batch mode. It aims at
using idle resources available in clusters or desktop work-
stations. Submissions are distributed so each host maintains
a job queue and there is no central server to orchestrate jobs.

Besides the command-line applications, Condor also
provides a set of APIs that allows the development of job-
management applications [5]. In contrast, CSBase provides
high-level services, allowing developers to create applica-
tions in a faster and simpler way, for example by customiz-
ing provided components.

5. Final Remarks

In this paper, we presented CSBase, a framework that
helps the development of customized grid environments.
Like other grid infrastructures, CSBase provides support for
remote task execution, task monitoring and resource man-
agement, among other common features of grid middle-
ware. However, CSBase differs from other infrastructures
in the facilities it provides to develop customized grid en-
vironments, composed by specialized services and end-user
applications. In this way, a CSBase instance provides its
users with an integrated grid workbench within which they
can easily access grid resources.

We have already applied CSBase in some projects and,
based on this experience, we can confirm that an end-user
working environment integrated with the grid is a very im-
portant feature to enable the effective use of grid resources.

Currently, we are investigating the evolution of CSBase
in many directions. We plan to expand the capabilities of the
Algorithm Flow Constructor with a better support for grid
orchestration. We are also working on the improvement of

our scheduling mechanism to take into account data transfer
overheads between machines.

As part of CSGrid environment, we are investigating
mechanisms that contribute to the development of coupled
parallel applications using our distributed rendering sys-
tem [1]. In this regard, our goal is to adapt this system to be
used in the CSGrid workbench.

We also plan to provide CSBase with the capability to
work with decentralized administration. This feature will
allow the use of CSBase in environments with multiple ad-
ministrative domains.

References

[1] F. R. Abraham, W. Celes, R. Cerqueira, and J. L. Elias. A
Load-balancing Strategy for Sort-First Distributed Render-
ing. In Proceedings of SIBGRAPI 2004. IEEE Computer
Society, Oct. 2004.

[2] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
Gass: A data movement and access service for wide area
computing systems. In Sixth Workshop on I/O in Parallel
and Distributed Systems, May 1999.

[3] N. Bleistein, J. Cohen, and J. Stockwell. The mathematics of
seismic imaging, migration, and inversion. Springer, 2000.

[4] B. Callaghan. NFS Illustrated. Addison-Wesley, 1999.
[5] Condor Team. Condor Version 6.7.10 Manual. University

of Wisconsin-Madison. http://www.cs.wisc.edu/
condor/manual/v6.7/.

[6] I. Foster. A Globus Toolkit Primer. http://www.
globus.org/primer, 2005.

[7] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. International
Journal Supercomputer Applications, 15(3), 2001.

[8] Globus. http://www.globus.org, 2003.
[9] Openspirit. http://www.openspirit.com, 1997.

[10] Torque resource manager. http://www.
clusterresources.com/products/torque/,
2001.

[11] GIGA Project. http://www.giga.org.br, 2005.
[12] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor

– a distributed job scheduler. In T. Sterling, editor, Beowulf
Cluster Computing with Linux. MIT Press, October 2001.

[13] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality. John
Wiley & Sons Inc., May 2003.

[14] Tivoli storage manager. http://www.tivoli.com,
1999.

[15] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and
S. Tuecke. CoG Kits: A Bridge between Commodity Dis-
tributed Computing and High-Performance Grids. In ACM
Java Grande 2000 Conference, pages 97–106, San Fran-
cisco, CA, June 2000.


