

INF 1010 Estruturas de Dados Avançadas

Complexidade de Algoritmos

Introdução

Complexidade computacional

- Termo criado por Juris Hartmanis e Richard Stearns (1965)
- Relação entre o tamanho do problema e seu consumo de tempo e espaço durante a execução

Introdução

Complexidade computacional

- Fundamental para projetar algoritmos eficientes
- Preocupação com complexidade deve ser parte do projeto de um algoritmo

Introdução

Exemplos:

- Ordenar n números
- Multiplicar duas matrizes quadradas $n \times n$ (cada uma com n^2 elementos)

- Complexidade Espacial:
 - Quantidade de recursos utilizados para resolver o problema
- Complexidade Temporal:
 - Quantidade de tempo utilizado, ou número de instruções necessárias para resolver determinado problema
- Medida de complexidade
 - de acordo com o tamanho da entrada

espacial

 recursos (memória) necessários

temporal

- tempo utilizado
- número de instruções necessárias
- perspectivas:
 - pior caso
 - caso médio
 - melhor caso

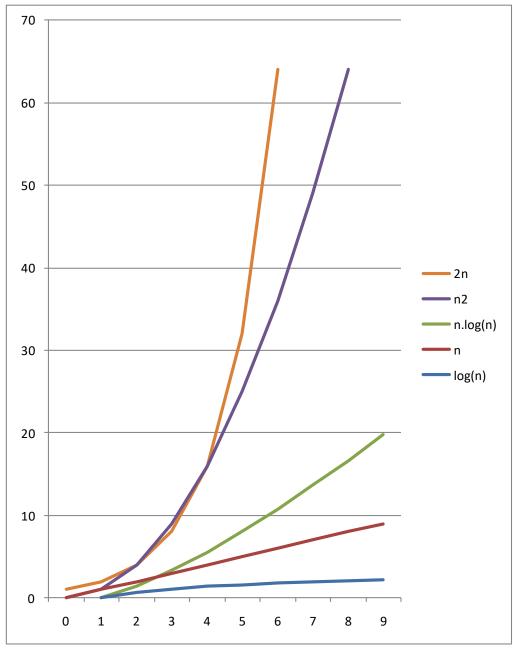
```
float soma (float valores[], int n)
{
  int i;
  float somatemp = 0;
  for (i=0; i < n; i++)
    somatemp += valores[i];
  return somatemp;
}</pre>
```

```
/* contando tempo */
#include <time.h>
double tempo;
float soma (float valores[], int n)
{
   int i;
   float somatemp = 0;
   clock_t tinicio = clock();
   for (i=0; i < n; i++)
   {
      somatemp += valores[i];
   }
   tempo=((double)clock()-tinicio)/CLOCK_PER_SEC;
   return somatemp;
}</pre>
```

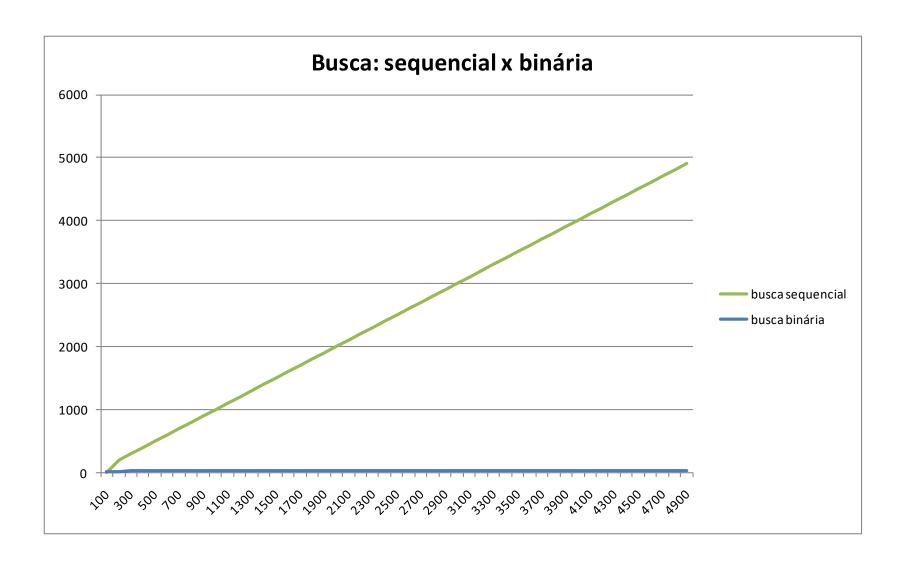
```
/* contando número de passos,
   considerando apenas atribuição
   e retorno de valores */
int count = 0;
float soma (float valores[], int n)
 int i;
 float somatemp = 0;
 count++; /* atribuição somatemp */
 for (i=0; i < n; i++)
   count++; /* incremento for */
             /* atrib somatemp */
   somatemp += valores[i];
 count++; /* último incr. for */
             /* return */
 return somatemp;
```

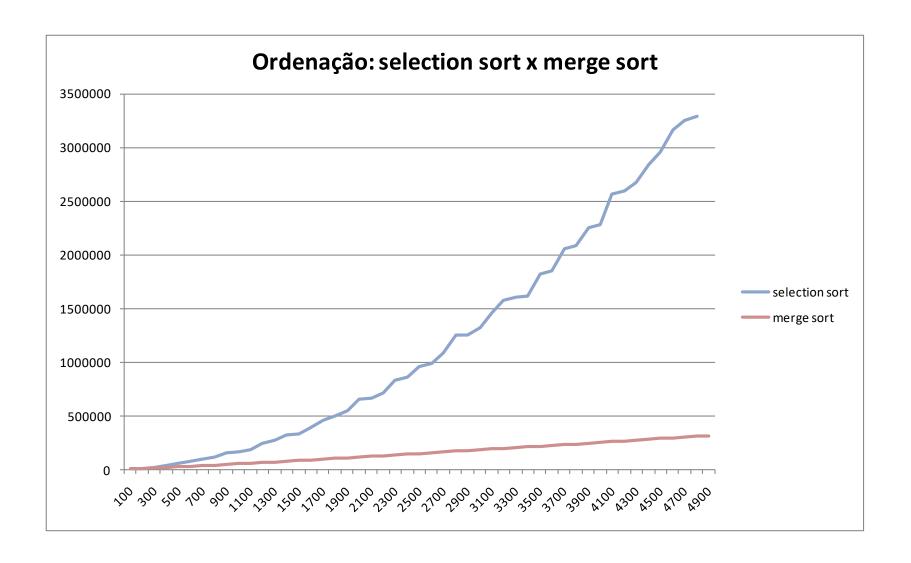
n	log2(n)	n	n*log2(n)	n^2	2^n
10	0,00	0 seg	0 seg	0.1 seg	1 seg
100	0,01	0 seg	1 seg	10 seg	milenios
1.000	0,01	1 seg	10 seg	16 min	
10.000	0,01	10 seg	2 min	27 h	
100.000	0,02	2 min	28 min	115 dias	
1.000.000	0,02	17 min	6 h	31 anos	
10.000.000	0,02	3 h	65 h	3 170 anos	

Complexidade...



log(n)	n	n.log(n)	n ²	2 ⁿ
0	1	0	1	2
0,69	2	1,39	4	4
1,10	3	3,30	9	8
1,39	4	5,55	16	16
1,61	5	8,05	25	32
1,79	6	10,75	36	64
1,95	7	13,62	49	128
2,08	8	16,64	64	256
2,20	9	19,78	81	512
2,30	10	23,03	100	1024
2,40	11	26,38	121	2048
2,48	12	29,82	144	4096
2,56	13	33,34	169	8192
2,64	14	36,95	196	16384
2,71	15	40,62	225	32768
2,77	16	44,36	256	65536
2,83	17	48,16	289	131072
2,89	18	52,03	324	262144
2,94	19	55,94	361	524288
3,00	20	59,91	400	1048576
3,04	21	63,93	441	2097152
3,09	22	68,00	484	4194304
3,14	23	72,12	529	8388608
3,18	24	76,27	576	16777216
3,22	25	80,47	625	33554432
3,26	26	84,71	676	67108864
3,30	27	88,99	729	1,34E+08
3,33	28	93,30	784	2,68E+08
3,37	29	97,65	841	5,37E+08
3,40	30	102,04	900	1,07E+09
3,43	31	106,45	961	2,15E+09
3,47	32	110,90	1024	4,29E+09
3,50	33	115,38	1089	8,59E+09
3,53	34	119,90	1156	1,72E+10
3,56	35	124,44	1225	3,44E+10
3,58	36	129,01	1296	6,87E+10
3,61	37	133,60	1369	1,37E+11
3,64	38	138,23	1444	2,75E+11
3,66	39	142,88	1521	5,5E+11
3,69	40	147,56	1600	1,1E+12
3,71	41	152,26	1681	2,2E+12
3,74	42	156,98	1764	4,4E+12
3,76	43	161,73	1849	8,8E+12
3,78	44	166,50	1936	1,76E+13
3,81	45	171,30	2025	3,52E+13
3,83	46	176,12	2116	7,04E+13
3,85	47	180,96	2209	1,41E+14
3,87	48	185,82	2304	2,81E+14
3,89	49	190,70	2401	5,63E+14
3,91	50	195,60	2500	1,13E+15
	50	155,00		1/102 113





Melhor Caso (Ω - ômega)

- o menor tempo de execução para uma entrada de tamanho *n*
- · pouco usado, por ter aplicação em poucos casos

Exemplo:

- problema: encontrar um elemento em uma lista de *n* números
- a complexidade no melhor caso:
 - assume-se que o número estaria logo na topo da lista
 - $f(n) = \Omega(1)$

Pior Caso (O - ômicron)

- maior tempo de execução sobre entradas de tamanho n
- mais fácil de se obter

Exemplo:

- problema: encontrar um elemento em uma lista de *n* números
- complexidade no pior caso
 - · assume-se que o número estaria, no pior caso, no final da lista
 - O(n)

Caso Médio (θ - theta)

- Média dos tempos de execução de todas as entradas de tamanho n, ou baseado em probabilidade de determinada condição ocorrer
- Mais difícil de se determinar

Exemplo (cont.):

• complexidade média é P(1) + P(2) + ... + P(n)onde Pi = i/n, com $1 \le i \le n$ P(1) + P(2) + ... + P(n) = 1/n + 2/n + ... + 1 = $\frac{1}{n}(1+2+...+n) = \frac{1}{n}\left(\frac{n(n+1)}{2}\right)$ $f(n) = \theta\left(\frac{n+1}{2}\right)$

Exemplo

Considere o número de operações de cada um dos dois algoritmos que resolvem o mesmo problema:

Algoritmo 1:
$$f_1(n) = 2n^2 + 5n$$
 operações

Algoritmo 2:
$$f_2(n) = 50n + 4000$$
 operações

Dependendo do valor de n, o Algoritmo 1 pode requerer mais ou menos operações que o Algoritmo 2

$$n = 10$$
 $f_1(10) = 2(10)^2 + 5*10 = 250$ $f_1(100) = 2(100)^2 + 5*100 = 20500$ $f_2(10) = 50*10 + 4000 = 4500$ $f_2(100) = 50*100 + 4000 = 9000$

Comportamento assintótico

Comportamento assintótico:

- Quando *n* tem valor muito grande $(n \to \infty)$
- Termos inferiores e as constantes multiplicativas contribuem pouco na comparação e podem ser descartados

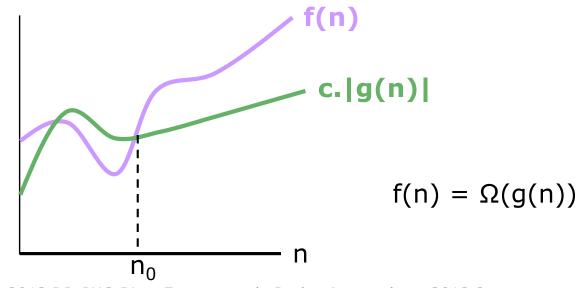
Exemplo:

- Algoritmo 1: $f_1(n) = 2n^2 + 5n$ operações
- Algoritmo 2: $f_2(n) = 500n + 4000$ operações
- $f_1(n)$ cresce com n^2
- $f_2(n)$ cresce com n
- crescimento quadrático é pior que um crescimento linear
- Algoritmo 2 é melhor do que o Algoritmo 1

A notação Ω

Definição: Sejam f e g duas funções de domínio X. Dizemos que a função f é $\Omega(g(n))$ sse $(\exists c \in \Re^+)(\exists n_0 \in X)(\forall n \geq n_0)(c.|g(n)| \leq |f(n)|)$

A notação Ω dá um limite inferior assintótico.



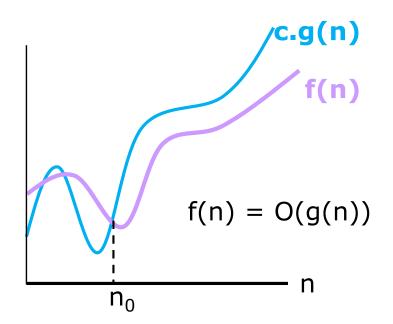
A notação O

Definição: Sejam f e g duas funções de domínio X.

Dizemos que a função f é O(g(n)) sse

$$(\exists c \in \Re^+)(\exists \ n_0 \in X)(\forall \ n \ge n_0)(|f(n)| \le c.|g(n)|)$$

A notação O nos dá um limite superior assintótico



Exemplos:

$$3n + 2 = O(n)$$
, pois
 $3n + 2 \le 4n$ para todo $n \ge 2$

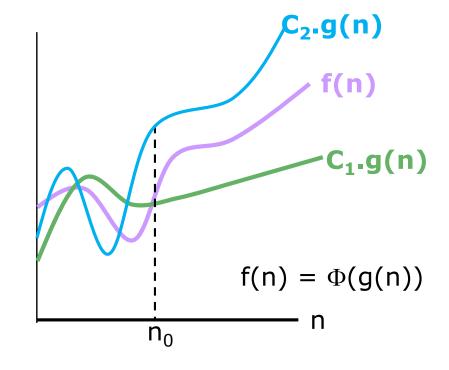
$$1000n^2 + 100n - 6 = O(n^2)$$
, pois $1000n^2 + 100n - 6 \le 1001n^2$ para $n \ge 100$

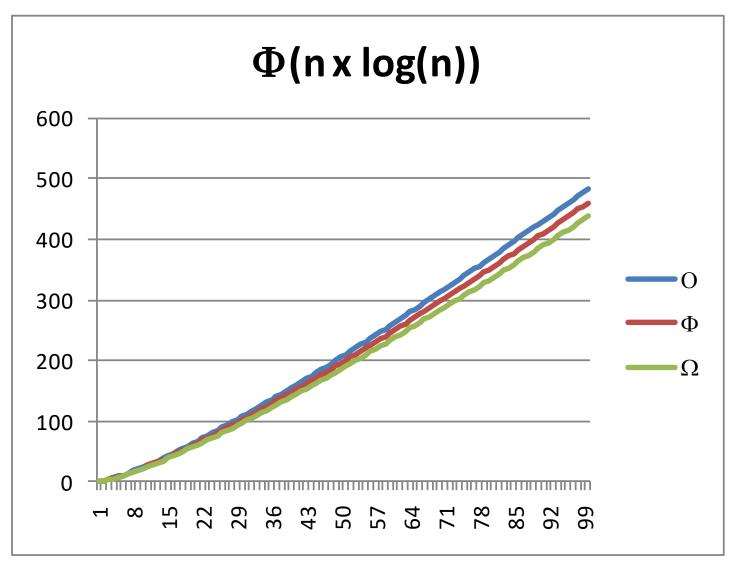
$$f(n) = a_m n^m + ... + a_1 n + a_0 \Rightarrow f(n) = O(n^m)$$

A notação Φ

Definição: Sejam f e g duas funções de domínio X. Dizemos que a função f é $\Phi(g(n))$ sse $(\exists c_1, c_2 \in \Re^+)(\exists n_0 \in X)(\forall n \geq n_0)(c_1.|g(n)| \leq |f(n)| \leq c_2.|g(n)|)$

f(n) é Φ (g(n)) sse existirem duas constantes positivas c_1 , c_2 de tal modo que é possível limitar a função |f(n)| por c_1 |g(n)| e c_2 |g(n)| para n suficientemente grande





Busca sequencial

```
int buscaSequencial(char vetor[], int n, char dado)
   int i;
   for (i=0; i< n; i++)
      if ( vet[i] == dado )
          return i;
   return -1;
```

Busca sequencial Análise do melhor caso (Ω)

Quando acontece o melhor caso?

- Quando o dado procurado está na primeira posição do vetor.
- O algoritmo realizará apenas uma comparação, ou seja, f(n) = 1

Complexidade no melhor caso: $\Omega(1)$

Busca sequencial Análise do pior caso (O)

Quando acontece o pior caso?

- Quando o dado procurado está na <u>última</u> posição do vetor ou <u>o dado não está no vetor</u>
- Dado um vetor de tamanho n temos que f(n) = n

Complexidade no pior caso: O(n)

Busca binária (vetor ordenado)

```
int buscaBinaria( char vetor[], char dado, int inicio, int fim)
   int meio = (inicio + fim)/2;
    if ( vetor[meio] == dado ) return (meio);
    if (inicio >= fim) return -1;
    if ( dado < vetor[meio] )</pre>
       return buscaBinaria (vetor, dado, inicio, meio-1);
    else
       return buscaBinaria (vetor, dado, meio+1, fim);
```

Busca binária

O dado a ser procurado é o '7'.

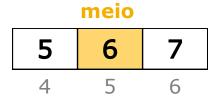
inic = 0
fim = 6
meio =
$$0 + 6 / 2 = 3$$

meio

1	2	თ	4	5	6	7
0	1	2	3	4	5	6

BuscaBinaria (vet, dado, meio+1, fim);

inic = 4
fim = 6
meio =
$$4 + 6 / 2 = 5$$



BuscaBinaria (vet, dado, meio+1, fim);

inic = 6
fim = 6
meio =
$$6 + 6 / 2 = 6$$

meio

Busca binária Análise do melhor caso (Ω)

Quando acontece o melhor caso?

- Quando o elemento procurado está no meio do vetor (já na primeira chamada)
- Nesse caso, será executada apenas uma comparação, e a posição já será retornada

Busca binária Análise do melhor caso (Ω)

```
int BuscaBinaria( char vet[], char dado, int inic, int fim) {
  int meio = (inic + fim)/2;

  if( vet[meio] == dado )
      return(meio);

  if (inic >= fim)
      return(-1);

  if (dado < vet[meio])
      BuscaBinaria (vet, dado, inic, meio-1);

  else
      BuscaBinaria (vet, dado, meio+1, fim);
}</pre>
```

- Algoritmo tem um comportamento constante: f(n) = 1
- Logo, o algoritmo é $\Omega(1)$

Busca binária Análise do pior caso (O)

O pior caso acontece quando o elemento procurado não está no vetor

n elementos

1º iteração: n elementos

2º iteração: n/2 elementos

3° iteração: n/4 elementos

4º iteração: n/8 elementos

5° iteração: n/16 elementos

K-ésima iteração: n/(2^{k-1}) elementos

Busca binária Análise do pior caso (O)

As chamadas param quando:

- a posição do elemento é encontrada ou
- quando não há mais elementos a serem procurados, isto é, quando n < 1.

Para qual valor de k, tem-se n < 1?

$$\frac{n}{2^{k-1}} = 1 \implies n = 2^{k-1} \implies \log_2 n = \log_2 2^{k-1} \implies \log_2 n = (k-1)\log_2 2 \implies$$
$$\implies \log_2 n = k-1 \implies k = 1 + \log_2 n$$

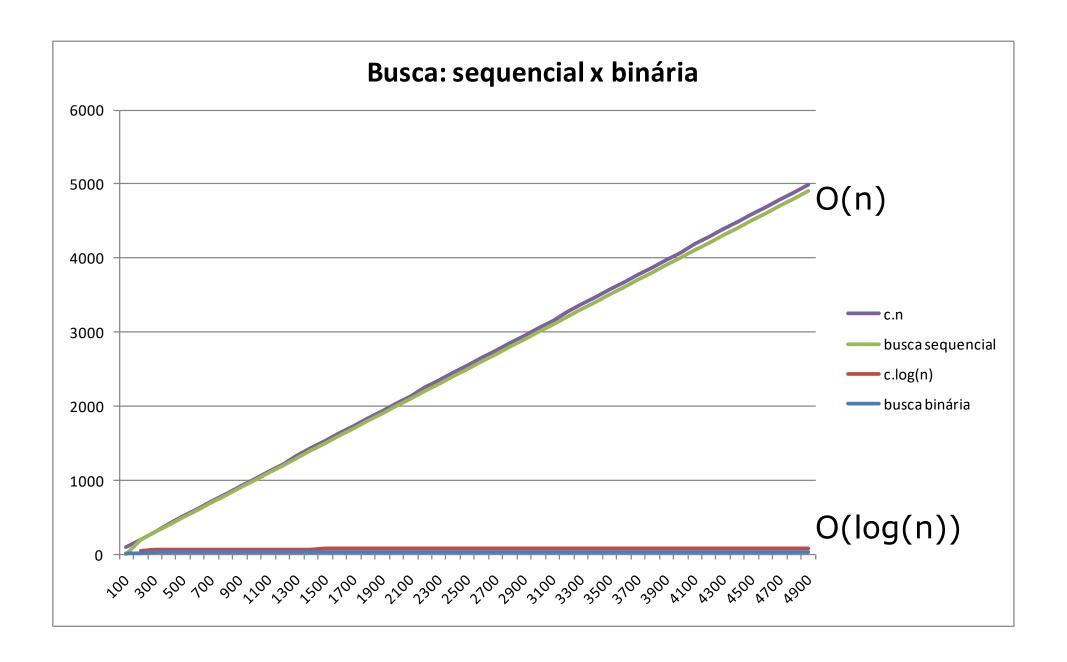
- Há ainda um elemento no vetor quando k = log₂n
- O algoritmo pára quando k > 1+ log₂n

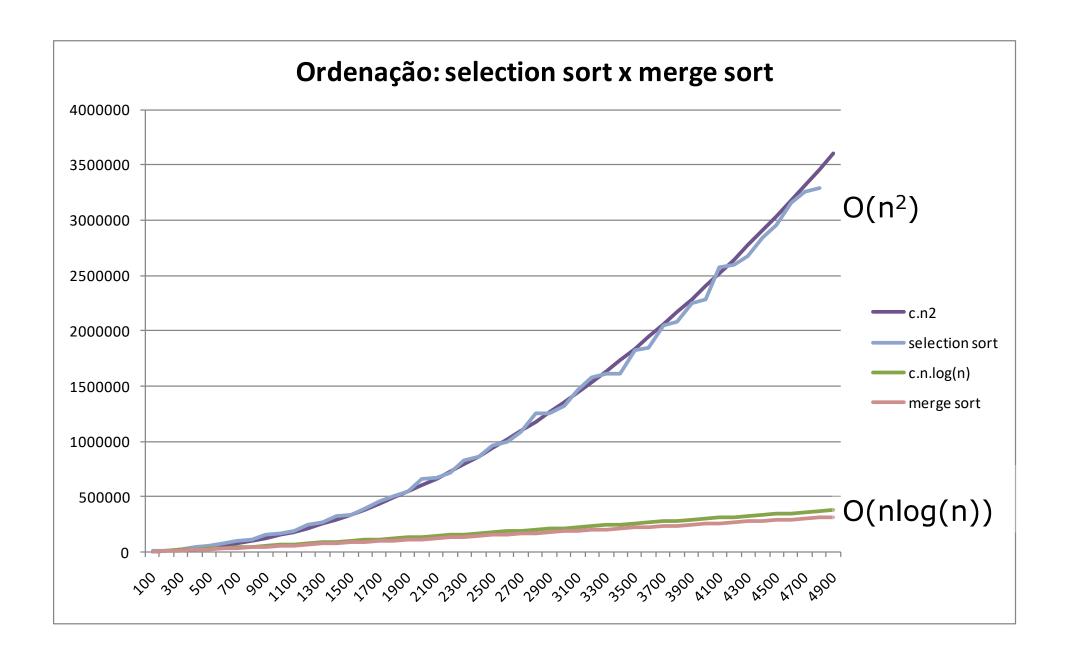
Busca binária Análise de pior caso (O)

Pior caso: $1 + \log_2 n$ passos

Mas, $1 + \log_2 n < c(\log_2 n)$, para algum c > 0.

Complexidade no algoritmo no pior caso: O(log₂n)





Complexidades comumente encontradas

Notação	Nome	Característica	Exemplo
O(1)	constante	independe do tamanho n da entrada	determinar se um número é par ou ímpar; usar uma tabela de dispersão (hash) de tamanho fixo
O(log n)	logarítmica	o problema é dividido em problemas menores	busca binária
O(n)	linear	realiza uma operação para cada elemento de entrada	busca sequencial; soma de elementos de um vetor
O(n log n)	log-linear	o problema é dividido em problemas menores e depois junta as soluções	heapsort, quicksort, merge sort
O(n ²)	quadrática	itens processados aos pares (geralmente loop aninhado)	bubble sort (pior caso); quick sort (pior caso); selection sort ; insertion sort
O(n³)	cúbica		multiplicação de matrizes n x n; todas as triplas de n elementos
O(n ^c), c>1	polinomial		caixeiro viajante por programação dinâmica
O(c ⁿ)	exponencial	força bruta	todos subconjuntos de n elementos
O(n!)	fatorial	força bruta: testa todas as permutações possíveis	caixeiro viajante por força bruta

 $Em \ geral: O(1) \leq O(logn) \leq O(n \) \leq O(nlogn) \leq O(n2) \leq O(n3) \leq O(c^n) \leq O(n!)$

Soma de vetores - Passos de execução

comando	passo	frequência	subtotal
<pre>float soma(float v[], int n)</pre>	0	0	0
{	0	0	0
int i;	0	0	0
float somatemp = 0;	1	0	1
for (i=0; i < n; i++)	1	n+1	n+1
<pre>somatemp += vet[i];</pre>	1	n	n
return somatemp;	1	1	1
}	0	0	0
Total			2n+3

O(n)

Soma de matrizes - Passos de execução

comando	passo	frequência	subtotal
<pre>float soma(int a[][N],, int rows, int cols)</pre>	0	0	0
{	0	0	0
int i, j;	0	0	0
for (i=0; i < rows; i++)	1	rows+1	rows+1
for (j=0; j < cols; j++)	1	$rows \times (cols+1)$	$rows \times (cols+1)$
c[i][j] = a[i][j]+b[i][j];	1	$rows \times cols$	$rows \times cols$
}	0	0	0
Total			2rows × cols + 2rows + 1

 $O(n^2)$

Soma de matrizes – complexidade

comando	complexidade assintótica
float soma(int a[][N],, int rows, int cols)	0
{	0
int i, j;	0
for (i=0; i < rows; i++)	Φ(rows)
for (j=0; j < cols; j++)	$\Phi(rows \times cols)$
c[i][j] = a[i][j]+b[i][j];	$\Phi(rows \times cols)$
}-	0
Total	Φ (rows × cols)

 $O(n^2)$

Multiplicação de matrizes - complexidade

comando	complexidade assintótica
<pre>float multi(double *a, double *b, double *c, int n)</pre>	0
{	0
int i, j, k;	0
for (i=0; i < n; i++)	n
for (j=0; j < n; j++)	n x n
{	0
c[i][j] = 0	nxn
for (k=0; k < n; k++)	0
c[i][j] += a[i][l] * b[l][j];	nxnxn
}	0
}	0
Total	Φ(rows × cols)

Cota Superior (Upper Bound)

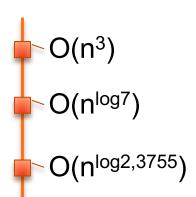
Cota superior de um problema

- Definida pelo algoritmo mais eficiente para resolver este problema
- A complexidade de um problema não pode ser maior que a do melhor algoritmo conhecido
- Conforme novos (e mais eficientes) algoritmos vão surgindo, esta cota vai diminuindo

Cota Superior: Multiplicação de Matrizes

Multiplicação de matrizes quadradas:

- Algoritmo tradicional
 - Complexidade O(n³).
 - Cota superior é no máximo O(n³)
- Algoritmo de Strassen (1969)
 - Complexidade O(n^{log7})
 - Leva a cota superior para O(n^{log7})
- Algoritmo de Coppersmith-Winograd (1990)
 - Complexidade O(n^{2,3755})



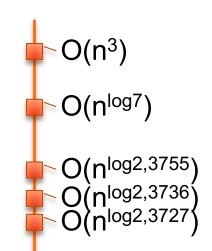
Cota Superior: Multiplicação de Matrizes

Multiplicação de matrizes quadradas:

- Andrew Stothers (2010)
 - melhorou o algoritmo de Coppersmith-Winograd, chegando a O(n^{2,3736})
- Virginia Williams (2011)
 - melhorou ainda mais o algoritmo, chegando a O(n^{2,3727})
 - define a cota superior conhecida atualmente

Todos esses algoritmos

- só se aplicam a matrizes muito grandes
- dependendo do caso, as matrizes podem nem ser processadas pelos computadores atuais



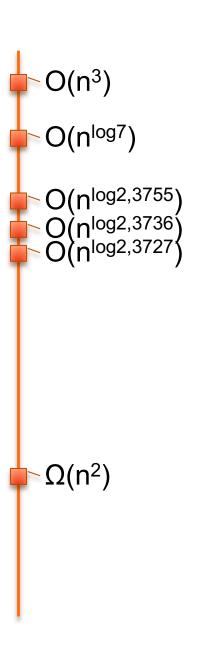
Cota Inferior (lower bound)

Cota inferior de um problema:

- Número mínimo de operações para resolver um problema, independente do algoritmo a usar
- Ou seja, qualquer algoritmo irá precisar de, no mínimo, um certo número de operações

Exemplo: multiplicação de matrizes

- apenas para ler e escrever uma matriz são necessárias n² operações
- Assim, a cota inferior seria $\Omega(n^2)$



Assintoticamente Ótimos

Algoritmos assintoticamente ótimos

complexidade igual a cota inferior

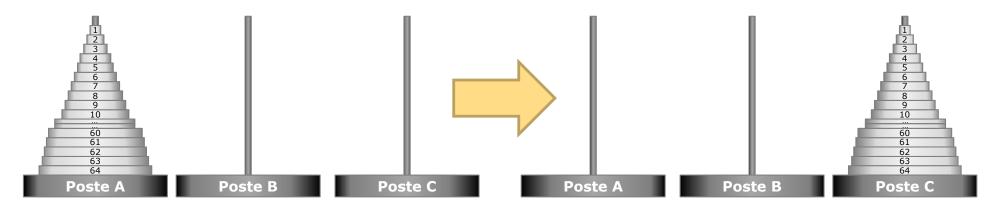
Exemplo: multiplicação de matrizes

 nenhum algoritmo assintoticamente ótimo é conhecido atualmente

Exemplo: Torres de Hanói

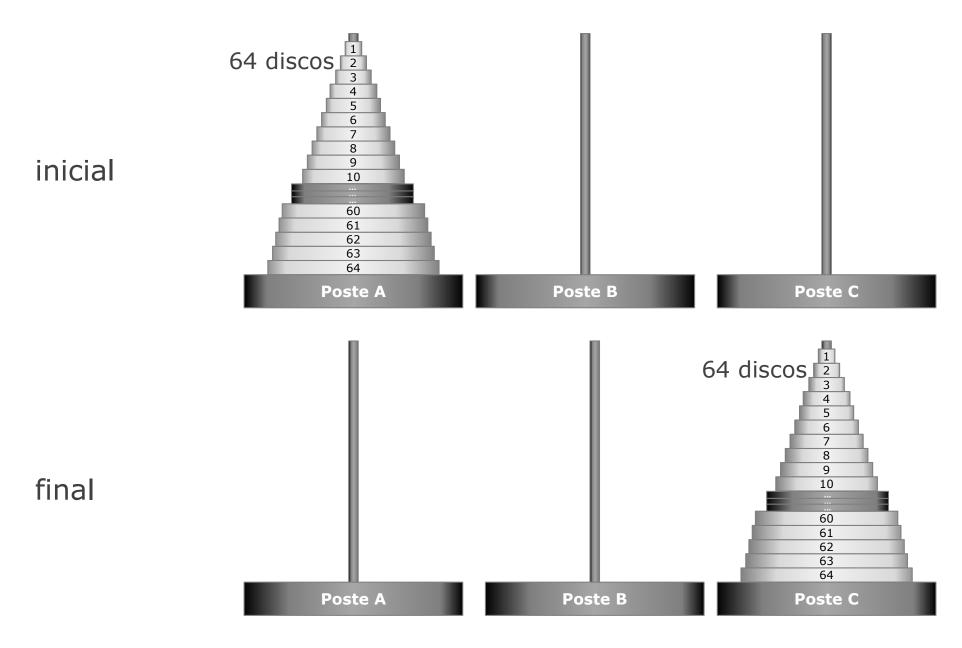
Diz a lenda que um monge muito preocupado com o fim do Universo perguntou ao seu mestre quando isto iria ocorrer.

O mestre, vendo a aflição do discípulo, pediu a ele que olhasse para os três postes do monastério e observasse os 64 discos de tamanhos diferentes empilhados no primeiro deles. Disse que se o discípulo quisesse saber o tempo que levaria para o Universo acabar, bastava que ele calculasse o tempo que levaria para ele mover todos os discos do Poste A para o Poste C seguindo uma regra simples: ele nunca poderia colocar um disco maior sobre um menor e os discos teriam que repousar sempre num dos postes.



Em quanto tempo você estima que o mestre disse que o Universo vai acabar?

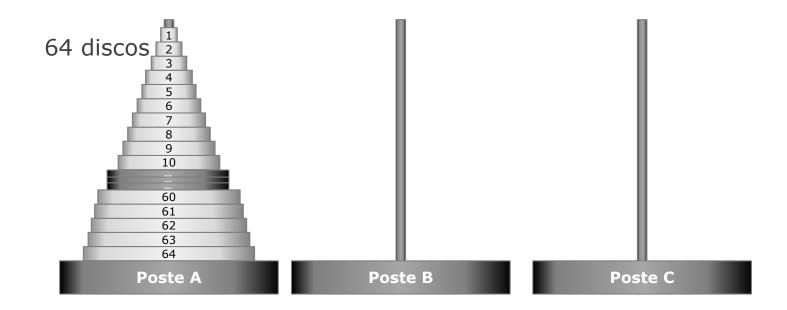
Torres de Hanói



Torres de Hanói – Algoritmo recursivo

Suponha que haja uma solução para mover n-1 discos.

A partir dela, crie uma solução para n discos.



Torres de Hanói – Algoritmo recursivo

Passo 1

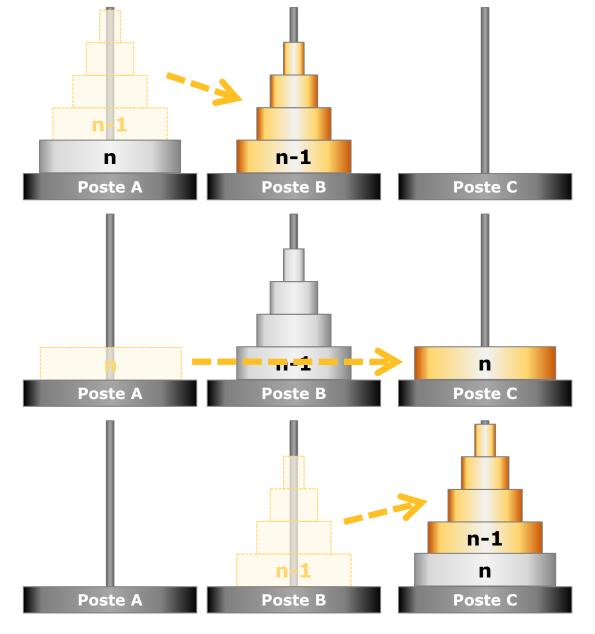
Mova n-1 discos do poste A para o poste B (hipótese da recursão)

Passo 2

Mova o n-ésimo disco de A para C

Passo 3

Mova n-1 discos de B para C (hipótese da recursão)



Torres de Hanoi – Implementação

```
#include <stdio.h>
void torres(int n, char origem, char destino, char auxiliar)
  if (n == 1) {
    printf("Mova o Disco 1 do Poste %c para o Poste %c\n", origem, destino);
    return;
  else {
    torres(n-1, origem, auxiliar, destino);
    printf("Mova o Disco %d do Poste %c para o Poste %c\n", n, origem, destino);
    torres(n-1, auxiliar, destino, origem);
int main( void )
  torres(3, 'A', 'C', 'B');
  return 0;
                                                         B (auxiliar)
                                                                        C (destino)
                                           A (origem)
```

Execução para 3 discos:

Mova o disco 1 do Poste A para o Poste C

Mova o disco 2 do Poste A para o Poste B

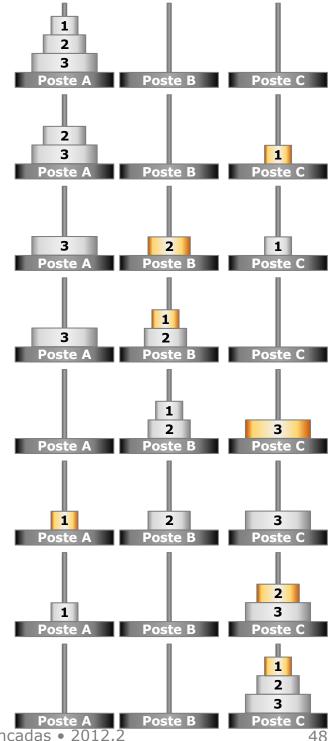
Mova o disco 1 do Poste C para o Poste B

Mova o disco 3 do Poste A para o Poste C

Mova o disco 1 do Poste B para o Poste A

Mova o disco 2 do Poste B para o Poste C

Mova o disco 1 do Poste A para o Poste C



Torres de Hanoi – Análise da complexidade

Seja t_n o tempo necessário para mover n discos

$$t_n = 1 + 2t_{n-1}$$
 (a constante 1 pode ser ignorada)

$$t_n \approx 2t_{n-1} = 2(2(2(2(2(2(2(2(2(2)))))))$$

$$t_n \approx 2^{n-1}t_1$$
 (exponencial)

Para 64 discos: $t_{64} \approx 2^{63}t_1 = 9.2 \times 10^{18}t_1$

Supondo que o tempo para mover um disco seja $t_1 = 1$ s, o monge levaria

292.277.265 milênios para terminar a tarefa!

2n-1		
n	n 2 ⁿ⁻¹	
1	1	
2	2	
3	4	
4	8	
5	16	
6	32	
7	64	
8	128	
9	256	
10	512	
11	1024	
12	2048	
13	4096	

Importância da complexidade de um algoritmo

