
Indoor Localization using SLAM in parallel with a Natural
Marker Detector

Lucas Teixeira
Department of Informatics

Pontfical Catholic University of
Rio de Janeiro

lucas@tecgraf.puc-rio.br

Alberto B. Raposo
Department of Informatics

Pontfical Catholic University of
Rio de Janeiro

abraposo@tecgraf.puc-
rio.br

Marcelo Gattass
Department of Informatics

Pontfical Catholic University of
Rio de Janeiro

mgattass@tecgraf.puc-
rio.br

ABSTRACT
Indoor localization poses is a challenge to computer vision
research, since one may not make use of GPS-based devices.
A classic approach commonly used in museums, research in-
stitutes, etc, is the use of fiducial marker to track the users
position. However, this approach is intrusive into the am-
bient and not always possible. A possible solution would
be natural marker detection, but algorithms for this, such
as SURF, have not yet achieved real-time performance. A
promising approach is a Visual Simultaneous Localization
and Mapping (VSLAM) algorithm, which, starting from a
known position, is capable of generating a map of the sur-
rounding environment in portable systems. The problem of
SLAM algorithms is theirs error accumulation that builds
up during the movement. This work presents an algorithm
to locate 3D positions in non-instrumented indoor environ-
ments using a web camera. We define a hybrid approach,
using a pattern-recognition method to reinitialize whenever
possible a VSLAM algorithm. An implementation of the
proposed algorithm use well-known computer vision algo-
rithms,such as SURF and Davison’s SLAM. In addition,
tests were made on datasets from walks inside a room. Re-
sults indicate that our approach is better than a fiducial
marker tracking and pure SLAM tracking in our test envi-
ronment.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Motion; I.5.4
[Applications]: Computer vision

General Terms
Algorithms;Experimentation

Keywords
SLAM ; Tracking ; Indoor Localization ; Picking ; Computer
Vision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

1. INTRODUCTION
Augmented Reality (AR) is becoming an important means of
communication between digital systems and users. The en-
tertainment industry, mobile map guidance, and geographi-
cally distributed collaborative work in large industrial projects
are areas where AR is blooming. Nevertheless, commercial
and industrial applications are still in their infancy because
AR algorithms are still not robust and accurate enough to
sustain critical usage.

Tracking is one of the most difficult areas in AR systems.
Tracking algorithms give the position of the camera as it
moves in an environment. This information is crucial to
align the virtual world with the real world. Thus, this align-
ment creates the augmented world, the augmented reality.
Tracking in commercial and industrial sites is difficult for
many reasons: GPS approaches do not work inside build-
ings; magnetic solutions do not work with metals around;
mechanical encoders, like FaroArm, have a small functional
area; infrared trackers have problems with occlusions and
do not allow other sources of infrared light, such as sunlight
and incandescent light bulbs.

There are many applications of tracking solutions in indus-
trial facilities. For instance, distribution centers and ware-
houses store hundreds of thousands of objects and need an
efficient retrieval method. An important task is to quickly
locate where a given object is stored. Codes are usually em-
ployed to identify shelves and places within them. When
an object is needed, the worker finds the code in the inven-
tory and looks for it in the warehouse. This operation is
called picking. Schwerdtfeger et al. [14] present an interface
evaluation of a picker using an HMD (head-mounted dis-
play) in order to improve the accuracy and the efficiency of
the picking process. The HMD shows the path to the ob-
ject. However, this application requires a tracking system
to present the correct path, as does a GPS car navigation
system. As a proof of concept, Schwerdtfeger et al. use
an infrared tracking system, like Vicon1, but this kind of
solution is not feasible in practice, as explained above.

Davison [5] presented a revolutionary system using a SLAM
(Simultaneous Localization and Mapping) approach which
has a great potential to solve these industrial problems.
From a known position, SLAM systems are capable of mov-
ing in space and keeping their position known while gener-
ating a map of the surrounding environment. These systems
work incrementally. From a known position, they map new
features that are in the field of vision. These new points

1www.vicon.com

cover an area larger than the original view frustum and, as
the camera moves, they are used in the calibration process.
That is, from a new view point there are known points to
localize the camera and unknown points that are mapped to
further use. Davison’s system was the first to achieve real-
time processing in a common desktop computer and using
images from a single camera as input. However, it has some
drawbacks: the localization error builds up quickly , inval-
idating the camera tracking as the user moves in a large
environment ; instant occlusion by another person or fast
movements that produce blurred images also invalidate the
tracking.

This paper presents a methodology to improve a Visual
SLAM-based tracking algorithm in order to reduce the lo-
calization error of the camera using only computer vision.
We use texture-detection algorithms to improve the SLAM
algorithm, achieving a tracking algorithm that works in well-
known environments of any size, without illumination re-
strictions, and performs well in partially dynamic environ-
ments, such as a warehouse where part of the environment
(e.g. shelves) is static and part (e.g. the contents of shelves)
is dynamic. We define a hybrid approach, using a pattern-
recognition method to reinitialize, whenever possible, a Vi-
sual Simultaneous Localization and Mapping (VSLAM) al-
gorithm. So, we expect that the camera will always be rel-
atively near to a known individual natural marker/texture.
When a marker shows up, the map is cleaned and the local-
ization error is eliminated. Using this strategy, the VSLAM
algorithm becomes scalable, allowing it to perform in large
environments. The use of a pattern detector invariant un-
der illumination changes allows the presence of windows in
the indoor environment. Theoretically, there is no restric-
tion to the use of the proposed algorithm in outdoor sites,
but differential GPS is better and easier to use, because it
does not need prior mapping of the textures. The methodol-
ogy presented expects a prior mapping of some textures on
the environment to be used as a natural marker. However,
no instrumentation is required. It is necessary only to use
geographically located photos in the mapping stage.

This paper is organized as follows. In Section 2 we discuss
related work. The proposed algorithm is presented in Sec-
tion 3. Section 4 tests the limits of the proposed algorithm
and compares it with similar solutions. Finally, conclusions
are presented in Section 5.

2. RELATED WORK
AR researchers have been studying solutions to be used in-
side buildings for a while. Wagner and Schmalstieg [15]
presented an AR system to be used inside a building with
fiducial markers spread throughout its walls. These mark-
ers must be distributed every two meters on all walls. For
each captured image, the position of the PDA is calculated,
and the user is given directions to the room where he/she
wants to go. The low processing cost is the best quality of
this system, since it processes a single fiducial marker at a
time. On the other hand, this system has severe limitations.
One of them is the absence of tracking in the area between
two markers, restricting its use to objects close to the mark-
ers. Another problem is the interference in the environment.
In most places it is impossible to put the large number of
fiducial markers required by this system. The algorithm
proposed in the present paper can perform the same kind
of tracking as that system, but it uses a reduced number of

natural landmarks, since it uses a SLAM algorithm to obtain
the camera position in these spaces in between landmarks.

At the other extreme, there are algorithms that are capa-
ble of localizing the camera in completely unknown environ-
ments, as long as the camera starts from a known position.
They are VSLAM algorithms, which generate a map of the
environment while the camera moves. However, these al-
gorithms have a serious problem regarding the accumulated
error along the camera movement. Figure 1(a) shows the
result of the tracking throughout the internal courtyard of
Pembroke College (Figure 1(c)) using the implementation of
the VSLAM algorithm [5] that we used in the present work.
The resulting error is caused by the error accumulated dur-
ing the movement. Since the localization and mapping pro-
cess in SLAM has an approximation error, and new points
added to the map use points that were included in the map
by the same process as reference, maps generated by SLAM
algorithms have exponential error. To correct the generated
map in a post-processing step, loop-close algorithms may be
used [16, 4]. In this kind of correction, the camera needs to
complete a closed loop and continue for a few more meters.
With this procedure, it is possible to match the points at
the end of the loop with those at the beginning, and then
correct the whole map. We can see the result of this kind of
algorithm in Figure 1(b). Therefore, for the type of real-time
application we are considering, a VSLAM algorithm cannot
be used alone, since the exponential error is not acceptable
for the camera tracking.

(a) SLAM results (b) Corrected results

(c) Pembroke College

Figure 1: Results of loop-closing correction. Source:
[16]

Another option for tracking was proposed by Castle et
al. [2]. This approach uses Klein and Murray’s PTAM algo-
rithm [8], which maps the environment in real time based on
keyframes and bundle adjustment. PTAM has a limitation
on tracking amplitude, since, at each new keyframe, the op-
timization time increases considerably. To tackle this issue,
Castle et al. proposed the concept of interest islands, where
AR data can be shown. For each island, one can select a tex-

ture to be the island’s identifier. Using a real-time texture
recognizer, Castle’s algorithm identifies the island, calcu-
lates the position of the camera, and starts PTAM tracking.
This approach is better than that of Wagner and Schmal-
stieg because it uses natural markers instead of fiducial ones,
and because it is possible to find objects until approximately
1 meter away from the marker. However, the detection of
natural markers is very slow, so out of the interest island,
real-time performance cannot be achieved. In addition, this
approach requires many markers; otherwise it lacks tracking
when the camera is not pointing to an island. Finally, the
last paper from Castle et al. [3] proposes a solution similar to
our work, but they use an inertial measurement unit (IMU)
and two cameras, where one is a pan-tilt camera and other
is normal. Our work uses just a normal webcamera in order
to reduce the system requirements.

3. PROPOSED ALGORITHM

The proposed algorithm attempts to reach a balance be-
tween two different strategies to compute the camera local-
ization as it moves in the interest area. The first strategy is
based on the idea presented by Wagner and Schmalstieg [15],
which relies on calibration markers placed all over the inter-
est area to recover the camera position. Although, we use
natural markers, instead of intrusive fiducial markers. Nat-
ural Markers are regions of the environment, which have
enough texture to be considered unique. The second strat-
egy is based on the SLAM algorithm, which performs si-
multaneous camera localization and feature mapping from
a single known marker in the area. The strategy proposed
here uses only a few natural markers in the area to serve
as spots for the automatic reinitialization of the SLAM al-
gorithm. The identification of markers occurs in parallel
with the updating process of SLAM, so when a marker is
identified and it is in a position that yields good calibration
results, the SLAM algorithm is reinitialized to eliminate the
accumulated error.

Figure 2 illustrates the basic idea of the proposed algo-
rithm, which works with two parallel threads. The main
thread is responsible for the following processes: (a) im-
age capture; (b) update of the VSLAM algorithm; and (c)
rendering of the captured image with additional virtual in-
formation (application layer). This thread needs to be fast
enough for interactive time (± 20Hz), so it is not feasible
to use a natural marker detector on this thread. The sec-
ond thread is responsible for the Relocalizer. This process
is constantly looking for natural markers using the SURF
algorithm. If a marker is found, the process consults its
database of mapped markers, called Marker Map, to identify
where the camera is. The Integrator receives the position of
the camera, in real world coordinates, as well as additional
information about the marker and the SLAM state to es-
timate the positioning error of both parallel tracking pro-
cesses. With all of this information, the Integrator decides
whether or not to reinitialize the SLAM algorithm. We will
provide details about these sub-algorithms in the following
sections.

3.1 Relocalizer
The Relocalizer is responsible for consistently seeking mark-

ers in the images captured by the camera. This sub-algorithm
uses pattern recognition to localize natural markers. We use

Figure 2: Basic architecture of the proposed algo-
rithm.

the SURF algorithm [1] as the natural marker detector be-
cause of its performance, of about 3 fps in our tests, de-
spite being slightly less accurate than SIFT [13], according
to Lieberknecht et al. [10]. We chose the CPU version of
SURF because our algorithm is designed to run on a high-
performance tablet PC, which normally does not have a good
GPU. When a marker is found, the detector calculates the
local position of the camera relative to the marker. To calcu-
late the global position of the camera, the Relocalizer queries
the global position of the marker in Marker Map and then
converts the camera position from the local coordinate sys-
tem to the global one.

The SURF algorithm may have its performance affected
if the group of natural markers is very large, because it
searches by comparing the keypoints of the image captured
by the camera with the keypoints of each possible marker.
To reach 3 fps, it is necessary to maintain the number of pos-
sible markers around 20. Therefore, we reduced the group of
possible markers to the 20 markers closest to the last known
position of the camera. This way, the search is delayed only
in the initial frame, when there is no previous position and
when the camera moves too much while the tracking is lost,
because the estimation of the last known position may be
useless.

The Marker Map is filled during the pre-processing phase
with the positions of the markers in the global coordinate
system. It also stores the points to be tracked by SLAM.
This is necessary because the feature-point detector of SURF
is different from the detector of the SLAM algorithm used
in this article. For this reason we cannot use the keypoints
of natural markers as features to be tracked by SLAM. To
automatically select points that are good to be tracked by
SLAM, the detector of the SLAM algorithm first detects
features. Then the nearest point to each of the four corners
of the image is chosen from among the 10% best features.
Figure 3 shows the points selected for the natural markers,
which are selected automatically.

This work does not focus on how to perform the global
mapping of markers. We used laser measuring equipment
called Total Station to perform our tests due to its accu-
racy. However, the measures could also be made using vari-
ous computer vision methods to recover the geometry of the
environment, including a SLAM algorithm with loop-closure
refinement [16] and others using several markers [9].

When a natural marker is found, there is a synchronization
problem with SURF because it does not work in real time,
as explained above. To solve this issue, we propose a modi-

Figure 3: Configuration of the measured points in
natural markers.

fication of the original SLAM [5] algorithm to minimize the
synchronization problem. This modification will be detailed
in the next section, followed by a section that explains how
to automatically reinitialize the algorithm proposed here.

3.2 VSLAM
Theoretically, the algorithm proposed here is not related

to any specific VSLAM algorithm, because all VSLAM al-
gorithms have the same behavior. They determine the self-
location in a position known to the camera/robot, and build
a dynamic map to be capable of updating the self-location
from positions around the initial position as well. In the
present work, we need a SLAM algorithm capable of self-
localizing from a camera pose, like the Relocalizer does. To
accomplish this, we use a modified version of the SLAM al-
gorithm proposed by Davison [5]. The original version of
this algorithm does not have an initialization process . The
Davison approach supposes that the camera will be initial-
ized only once in front of a known black rectangle. Our
modification of this algorithm gives it the ability to be ini-
tialized by markers while moving.

Davison’s algorithm is based on an Extended Kalman Fil-
ter (EKF). Below, we describe the mathematical model used
by Davison and then explain how to initialize the values of
the model starting from data supplied by a marker. We use
the same notation as [5]. The mathematical model of the
EKF has two structures that store data: the state vector x̂
and the covariance matrix P. The state vector x̂ is composed
of the sub-vector x̂v, which stores the camera data, and of
other sub-vectors ŷi, each one representing a 3D position
of the i feature point on the SLAM map. The covariance
matrix P is composed of covariance sub-matrices Pab, which
represent the covariance between sub-vectors a and b. The
components of the camera data(x̂v) are: rW , the 3D position
of the camera in the real world; qWR, the camera orientation
quaternion ; vW , the velocity vector; and ωR, the angular
velocity vector. The notation W means that the parameter
is in the global coordinate system, while R means that it is
relative to the local camera system.

x̂ =

x̂v
ŷ1

ŷ2

...

 , P =

Pxx Pxy1 Pxy2 · · ·
Py1x Py1y1 Py1y2 · · ·
Py2x Py2y1 Py2y2 · · ·
...

...
...

. . .

xv =

rW

qWR

vW

ωR

In order to initialize SLAM, the Relocalizer provides the

3D positions of the feature points to be tracked (y̆i), the
camera position in global coordinates (r̆W), its orientation

(q̆WR̆), and the time elapsed between the image capture

and the end of the marker detection (∆̆t). We assume that
the camera movement remains unaltered during the time
interval needed for the marker detection. Then, we update
the camera parameters calculated by the detector as shown
below. We use the following notation: matrix MVY converts
from a coordinate system Y to a coordinate system V; R̆
is the local coordinate system of the new camera position;
q(ωR∆̆t) is the quaternion corresponding to the rotation axis

ωR∆̆t; and O is a zero sub-matrix.

xv =

rWnew

qWR
new

vW
new

ωR
new

 =

r̆W + (MWR̆MRWvW)∆̆t

q̆WR̆ × q(ωR∆̆t)
vW

ωR

To update the covariance matrix in the reinitialization, we

need to fill it with zeros, because the map is filled only with
trusted features from the Marker Map. The camera position
is an exception, because the camera calibration given by the
Relocalizer implies some uncertainty. Then Pxx needs to
handle the uncertainty associated to each component of the
3D camera position. We assume that the uncertainties are
independent from each other. As a result, matrix Pxx is
formed as shown below. We empirically choose the param-
eter γ as 0.001 for both marker detectors.

P =

Pxx O O · · ·
O O O · · ·
O O O · · ·
...

...
...

. . .

Pxx =

γ 0 0 0 · · ·
0 γ 0 0 · · ·
0 0 γ 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

3.3 Integrator

The Integrator sub-algorithm is responsible for deciding
when it is possible to reinitialize the SLAM algorithm. When-
ever it is possible, it executes the reinitialization of the
SLAM algorithm, verifies the camera position in the state of
the Kalman filter, and then forwards it to the visualization.
When it is not possible to reinitialize SLAM, the Integrator
simply verifies the camera position and forwards it.

The reinitialization must occur either when the SLAM
algorithm is lost or when the uncertainty of the camera po-
sition calculated by SLAM is larger than that of the detected
marker. However, there is no objective way of calculating
the uncertainty of the marker detection, although there are
several works that measure the precision of these kinds of
marker detectors [11, 12, 7]. Based on these works we de-
fined a heuristic to determine when the reinitialization must

be executed. In this heuristic, we defined the minimal condi-
tions to enable the SLAM algorithm to track the scene after
the marker leaves the image.

When a marker leaves the camera image, other points
must already be in the SLAM map, so that SLAM can keep
calculating the camera position. For this reason, if the reini-
tialization is attempted with a marker very close to the im-
age border, when the camera moves to make the triangu-
lation and to calculate the 3D position of the new points,
there is a high possibility that the marker will be already
out of the image. To avoid this, we empirically defined 15%
of the image at each border as the limit for the marker. If a
marker crosses this limit, it is no longer considered for track-
ing reinitialization. Another way for a marker to leave the
image is by zooming in or out on a point to an extent that
it can no longer be tracked. To avoid this, we defined that
the maximum area of the image that a marker may occupy
is 90%, and the minimum is 10%. If a marker is out of these
limits, it is not considered for reinitialization. These values
depend upon the camera lens. We use a lens with 2.1mm of
focal distance.

In the next section, we present tests of our method against
the reference work.

4. PRATICAL EXPERIMENTS
In this section, we analyze the improvements using the low
precision constraints compared with Wagner and Schmal-
stieg’s [15] indoor localization approach. We also show the
importance of reinitialization in a SLAM algorithm. Then,
we are going to evaluate the reprojection errors of points
from an automatic reinitialization following the empirical
values explained in the section 3.3 constraints. The tests
examine the accuracy with which our algorithm indicates
objects in the scene without any marker in the image. For
the tests, we used a 2.20 GHz dual-core computer and a
firewire webcam with resolution of 320x240 and 30fps.

4.1 Controlled environment test
This experiment aims to analyze the idea of supplement-

ing tracking algorithms with marker-based SLAM. In addi-
tion, We will evaluate the error in estimating the position
of the camera. Therefore, the experiment will reproduce the
scenario that was used in the work of Wagner and Schmal-
stieg. Also, we replace the algorithm for tracking natural
markers by a fiducial marker tracking algorithm (ARToolK-
itPlus) equivalent to that used by Wagner and Schmalstieg
in order to make a direct comparison. Then, we can use
the same video to run the original algorithm of Wagner and
Schmalstieg and our modified algorithm. In the next exper-
iment, we will analyze the influence of the natural marker
tracking in the quality of SLAM tracking, which is the step
that was removed from this experiment. In the following
sections, we show the setup of the experiment, the testing
procedures and the analysis of the measurements.

4.1.1 Setup
Our test emulates a straight walk into a building. We

built a camera dolly system to ensure that the path of the
camera would be known, as shown in Figure 4. On the wall,
there are two fiducial markers 3.5 meters apart. The wall
measures about 4 meters. The markers and the dolly path
were mapped using Total Station.In addition, we randomly
fixed pieces of paper on the wall in order to give texture

to our white wall. The parameters used in the Davison’s
SLAM are the same used in the original paper.

Figure 4: Test station for low precision mode. There
are two markers on the wall. The camera and a
portable monitor were placed on a tripod which is
on top of a dolly (camera cart).

4.1.2 Procedures
The dolly system was pushed manually, trying to keep a

constant speed, parallel to the wall at which the camera was
pointed. The camera was panned/rotated 45 degrees in rela-
tion to the movement direction. We recorded and processed
the same video following Wagner and Schmalstieg’s [15] ap-
proach and our approach. The resulting graphs can be seen
in Figures 5,6,7 and 8.

Figure 5: Graph of error (meter) vs time(second) us-
ing Wagner and Schmalstieg’s [15] approach (Artkp
means ARToolKitPlus)

4.1.3 Evaluation
Comparing Figure 5 and Figure 6, we can make the follow-

ing observations. Wagner and Schmalstieg’s method does
not support such large distances, but our algorithm does.
Our method uses the ARToolKitPlus just a few seconds less
to be capable of swapping to SLAM mode. The camera
height is more stable in SLAM mode. Moreover, the depth
error (Figure 7) increases constantly in SLAM mode, but
when a new marker appears the error returns to the level of
ARToolKitPlus. This shows the importance of the SLAM
reinitialization. However, it only works in well-textured en-
vironments, like shown in [5, 6].Figure 10 shows the distance
traveled. Because the dolly was hand pushed, we don‘t have
the ground truth. However, if we consider the precision as

Figure 6: Graph of camera height error (meter) vs
time(second) using our algorithm

Figure 7: Graph of camera depth error (meter) vs
time(second) using our algorithm

measured in [11], then we can observe the error when the
second marker is found the traveled distance jumps 1.2 me-
ters whereas the jump expected by the article [11] is a max-
imum of 10 cm. So we conclude that the SLAM algorithm
evaluates a motion slower than the real motion.

4.2 Initialization accuracy of SLAM with SURF
This experiment aims to evaluate the accuracy expected in

the camera position estimated from our SLAM algorithm ini-
tialized with some examples of natural markers in different
positions. In this experiment, we run a unique initialization
using the heuristic explained in section 3.3 over each natural
marker. Next, we will show the setup of the experiment, the
testing procedures and the analysis of the measurements.

4.2.1 Setup
We prepared the test station as shown in Figure 9. We

spread eleven distinct objects on a 1.2m x 0.6m table. Spher-

Figure 8: Graph of traveled distance (meter) vs
time(second) using our algorithm

A B

C

D

E
F

Figure 9: Test station

Figure 10: Reprojection error of maker b

ical targets were fixed on each object (the white dots over the
objects in Figure 9). These targets represent the position of
the objects. We also set six natural markers at different dis-
tances (A: 0.4m on the left, B: 0.4m on the right, C: 0.8m
on top, D: 0.8m on the right, E: 1.0m and F: 2.0m) from
the center of the table. The marker A has a rectangular
black frame to help with the tracking. Markers D and F
have small black rectangles at the corners, which work like
the black frame but are less occlusive. The other markers
have rounded corners in order to simulate the textures of
non-rectangular objects. Almost on the center of the table,
a fiducial marker was placed. The markers are identified by
dotted ellipses in Figure 9.

4.2.2 Procedures
Regardless of the marker, we set the Marker Map database

to include only the marker we want and 19 other markers out
of the scene, in order to simulate the real conditions of the
detection of natural markers. Then we pointed the camera
at the marker and waited for the automatic initialization,
and then walked towards the table. In front of the table,
we moved the camera slightly in various directions to do
the tracking from different viewpoints. Then we calculated
the reprojection error of the sphere targets. The results are
presented below. We did not test ARToolKitPlus markers
because many other works have done this.

4.2.3 Evaluation
A typical result is shown in Figure 10 and table 1 presents

average values as well as the standard deviation of the re-
projection error. These values are the Euclidean distance

between the position of the sphere in the image and the
projected point. We considered only the frames where the
camera was in front of the table. The tracking from marker
F presented such a large error at the camera position that
no projected point appeared in the image.

distance mean error standard deviation

A 10.4 3.2
B 14.1 4.3
C 108.3 30.8
D 13.3 3.7
E 178.7 26.1

Table 1: Average reprojection error (in pixels) and
standard deviation.

We can see that, for distances of approximately 2 meters,
the tracking achieves values close to those of the last section
experiment. Moreover, the markers without the black rect-
angles or frames generated worse maps than those that had
this feature. The marker B, despite the lack of this feature,
had a good reprojection, but the tracking was lost after a
short time in front of the table because its map had fewer
features to be tracked. In our analysis, the use of these arti-
ficial black objects increases the tracking robustness because
they are more scale-invariant, and this is important for en-
abling the camera to move back and capture more points
after the initialization.

5. CONCLUSIONS
This paper presented a tracking approach for non-instru-

mented environments that uses SLAM to track non-marked
areas. However, different from conventional SLAM approaches,
in which the errors grow exponentially from an initial well-
known position and require corrections in non-real time, our
approach uses a pattern-recognition method to detect natu-
ral markers used to reinitialize the SLAM algorithm, elim-
inating the accumulated error at that moment. To enable
the use of a non-real time detector of natural markers, we
defined a multi-thread architecture and two heuristics that
determine the cases in which a marker can be considered for
SLAM reinitialization. The results presented have shown
that the reprojection error can be small enough to track
the camera using our algorithm. Also, it tracks the camera
between markers, allowing a greater distance between them.

Further experiments are necessary to analyze the error of
the camera on the motion axis. Moreover, we intend to study
how to add spatial information from the building in order to
restrict the possible position of the camera. Another inter-
esting possibility is to add a WIFI based localization to give
an approximation of the localization. With this additional
information the candidate set of the natural markers will
be smaller and it will also be easier to map an individual
natural marker because we will only be required to map it
in a small area, and the ambiguity will be resolved by the
approximation of the camera localization given by the WIFI
signal.

6. REFERENCES
[1] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded

up robust features. In In ECCV, pages 404–417, 2006.

[2] R. Castle, G. Klein, and D. W. Murray. Video-rate
localization in multiple maps for wearable augmented
reality. In Proceedings of the 12th IEEE International
Symposium on Wearable Computers, 2008.

[3] R. O. Castle, G. Klein, and D. W. Murray. Combining
monoslam with object recognition for scene
augmentation using a wearable camera. Image Vision
Comput., 28(11):1548 – 1556, 2010.

[4] L. A. Clemente, A. J. Davison, I. D. Reid, J. Neira,
and J. D. Tardós. Mapping large loops with a single
hand-held camera. In Proceedings of Robotics: Science
and Systems, 2007.

[5] A. J. Davison. Real–time simultaneous localisation
and mapping with a single camera. In Proceedings of
the Ninth IEEE International Conference on
Computer Vision, volume 2, pages 1403–1410, 2003.

[6] E. Eade and T. Drummond. Monocular slam as a
graph of coalesced observations. In IEEE 11th
International Conference on Computer Vision, 2007.

[7] S. Gauglitz, T. Hollerer, P. Krahwinkler, and
J. Rossmann. A setup for evaluating detectors and
descriptors for visual tracking. IEEE / ACM
International Symposium on Mixed and Augmented
Reality, pages 185–186, 2009.

[8] G. Klein and D. Murray. Parallel tracking and
mapping for small ar workspaces. In 6th IEEE and
ACM International Symposium on Mixed and
Augmented Reality, 2007.

[9] M. Klopschitz and D. Schmalstieg. Automatic
reconstruction of wide-area fiducial marker models. In
Proceedings of the 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2007.

[10] S. Lieberknecht, S. Benhimane, P. Meier, and
N. Navab. A dataset and evaluation methodology for
template-based tracking algorithms. In Proceedings of
the 8th IEEE International Symposium on Mixed and
Augmented Reality, pages 145–151, 2009.

[11] P. Malbezin, W. Piekarski, and B. H. Thomas.
Measuring artoolkit accuracy in long distance tracking
experiments. In In the First IEEE International
Augmented Reality Toolkit Workshop, 2002.

[12] K. Pentenrieder, P. Meier, G. Klinker, and M. Gmbh.
Analysis of tracking accuracy for single-camera
square-marker-based tracking. Dritter Workshop
Virtuelle und Erweiterte Realitt der GI-Fachgruppe
VR/AR, 2006.

[13] F. Schweiger, B. Zeisl, P. Georgel, G. Schroth,
E. Steinbach, and N. Navab. Maximum detector
response markers for SIFT and SURF. In Vision,
Modeling and Visualization Workshop (VMV).

[14] B. Schwerdtfeger, , and G. Klinker. In Proceedings of
the 7th IEEE/ACM International Symposium on
Mixed and Augmented Reality.

[15] D. Wagner and D. Schmalstieg. First steps towards
handheld augmented reality. In ISWC ’03:
Proceedings of the 7th IEEE International Symposium
on Wearable Computers, page 127, 2003.

[16] B. Williams, M. Cummins, J. Neira, P. Newman,
I. Reid, and J. Tardós. A comparison of loop closing
techniques in monocular slam. Robotics and
Autonomous Systems, 57(12):1188–1197, 2009.

