Designing multi-projector VR systems: from bits to bolts Luciano Pereira Soares, TecGraf - PUC-Rio / CENPES - Petrobras Joaquim A. Pires Jorge, INESC-ID, DEI Instituto Superior Técnico Miguel Salles Dias, ADETTI / ISCTE, MLDC Microsoft Bruno Araujo, INESC-ID, DEI Instituto Superior Técnico Alberto Raposo, TecGraf - PUC-Rio

Instituto Superior de Ciências do Trabalho e de Empresa

Main Topics

- Introduction
- Display Technologies
- Display Hardware Infrastructure
- Image Generation
- Tracking
- Multimodal Interaction
- Audio in Immersive Environments
- Software for Immersive Environments
- Case studies

Introduction

Luciano P. Soares

Tecgraf - Computer Graphics Technology Group Pontifical Catholic University of Rio <u>lpsoares@tecgraf.puc-rio.br</u> <u>http://www.tecgraf.puc-rio.br/~lpsoares/</u>

Background

- Immersive Environments
 - Stereoscopy
 - Tracking
 - Computers
 - Screens
 - Projectors...

Used to improve the feeling of immersion.

Cave Automatic Virtual Environment

- First cubic multi-projection
 - University of Illinois (1992)
 - Cluster of SGI Personal IRIS
 - Shared Memory

Fish Tank

Many users enjoy because they are used to this solution and the perceived resolution, brightness, crispness are different from the current immersive solutions available.

Applications

- Education
- Medicine
- Engineering
- Military
- Entertainment
- Etc...

C

Visualization Systems

Display Technologies

Luciano P. Soares

Tecgraf - Computer Graphics Technology Group Pontifical Catholic University of Rio <u>lpsoares@tecgraf.puc-rio.br</u> <u>http://www.tecgraf.puc-rio.br/~lpsoares/</u>

ePaper - Flexible, full-color OLED (Sony)

Projection Technologies

- Several Solutions
- Several Parameters
 - Brightness
 - Contrast
 - Resolution
 - Refresh RateColor
 - Lens

 - ConnectionsManagement

c

Brightness "Luminance"

- What are the terms?
- Which are the units?
- How to measure?
- How to choose?

Light Terms		
Term	Definition	Unit
Visible Light	light that excite the retina	nm
Luminous Flux	light energy / unit of time	lumen
Luminous Intensity	luminous flux from a point	cd
Luminance	luminous intensity per projected area	cd/m²(nit)
Illuminance	luminous flux incident on a surface/area	Lux (fc)
Radiance	amount of light from area in a solid angle	w/sr*m ²
Brightness	subjective perception light intensity	-
C		

Displays Brightness

Display	Brightness (cd/m²)
CRT monitor	50 - 150
LCD monitor	250 - 450
Plasma monitor	1000 - 1500
DLP TV	450 - 700
LED TV	450 - 550
FPDM—the Flat Panel Display Measurements Standard offered by the Video Electronics Standards Associatio	

Illumination Balance

- · Adapt to high illumination is fast: seconds;
- · Adapt to dark is slow: minutes;
- · Constant changes leads to eye fatigue;
- Solution: keep the illumination balanced

How to Choose the Brightness ?

Ranges (lumens) small screen Depends on some factors:

- < 1.000: cheap, home use;
- 1.000 to 2.000: cheap, office; 2.000 to 3.000: expensive, office;
- > 3.000: expensive, auditoriums.

G

- Ambient light •
- Screen size •
- Stereoscopy
- Subject

Contrast Expressed as a ratio between the brightest and darkest areas of the image. Contrast = (max intensity – min intensity) / min intensity

Dynamic Iris

A dynamic iris is a device built into some projectors that sits between the lamp and the lens. The projector evaluates the overall brightness of the image being projected at the moment, and then opens or closes the iris to allow more or less light through.

X:1

Scan Rate / Display Frequency

- Frequency:
 - Bandwidth (MHz);
 - Horizontal frequency range (KHz);
 - Vertical frequency range (Hz).
- Some projectors compress or change the source frequency;
- Vertical Blanking Interval (VBI) VBLANK;
 Reduced Blanking Interval.
- People usually see 15Hz blinking for dark images and 50Hz in a bright environment;
- Increasing refresh rates, reduce eye strain;
- People are more sensitive to flicker at the edges of the field of view

Colors

- 24 bits colors (8 bits per channel)

 256 gray scale, 256 for each color, etc;
 total of 16.7 million colors.
- 30 bits colors (10 bits per channel)
 ~1 billion colors
- 1024 gray scale and each pure color 36 bits colors (12 bits per channel)
- 69 billion colors
- 48 bits colors (16 bits per channel)
 2800 trillion colors

Color Temperature

- The temperature is stated in Kelvin (K);
- Temperature of an ideal black-body radiator;
- Higher color temperatures (5,000 K or more) are cool colors bluish;
- Lower color temperatures (3,000 K or less) are warm colors reddish.
- The human eye seems to be more receptive to the primary color wavelengths that are used by LED and laser displays to other conventional displays.

D50 50 D55 55 D65 65	03
D55 55	03
D65 65	00
000	04
D75 75	04

Lamps

- Incandescent
- Arc-lamps / Gas discharge

 UHP Ultra-High Performance
 Xenon arc lamps
- LED light-emitting diode
- Laser

UHP

- The Hg pressure inside the lamp has to be higher than 200 bar for good color quality and high efficiency. This requires bulb temperatures above 1190K at the coldest spot inside the lamp.
- At the same time the hottest parts of the quartz envelope have to stay < 1400 K

Xenon Lamp

- Xenon short-arc lamp
 - Noble gas (atomic number 54);
 - Expensive;
 - Short life time.

LED light

- Long life, little maintenance;
- Do not lose brightness as they age;
- Improvements in color reproduction;
- Small luminous flux;
- Avoids color wheel;
- Not yet very efficient.

ſ

Connections

- VGA
- DVI (single-link x dual-link)
- HDMI
- Display Port (mini display port)
- SDI
- wireless

Degradation New projector Old projector Old projector Old projector

Other Points to Evaluate

- Aspect Ratio
- · Color and Geometric Alignment
- · Weight
- Audio (Speakers)
- Auto focus
- Price

Common Projection Technologies

CRT (Cathode Ray Tubes)

- Based on 3 independent tubes (Red, Green, Blue);
- Advantages: calibration flexibility, high refresh rate (> 120MHz), high resolution, anti-aliasing;
- Disadvantages: low brightness, noise signals, complex color convergence.

LCD (Liquid Crystal Displays)

- Based on liquid crystal technologies
- Advantages: low cost, several options in the market
- Disadvantages: low refresh rates, screen door effect

Sony Br

D

LP (Digital Lighting Processing)

- · Based on Digital Micromirror Devices DMD
- Advantages: supports high lumens lamps, some models supports active stereo,
- Disadvantages: some screen door effect

G

LCOS (Liquid Crystal On Silicon)

- Based on reflexive liquid crystal;
- Advantages: high resolution, small screen door effect, high contrast;
- Disadvantages: only few models.

GLV (Grating Light Valve)

- Based on diffraction in 1D light scanning and laser as light source
- Advantages: ultra high resolution, support to active stereo, no screen door effect
- Disadvantages: speckle, not very bright, line
 pattern

Laser 2D Scanning Projector

- Based on a 2D light scanning of a laser light source;
- Advantages: vivid colours, can be very small;
- Disadvantages: speckle, not very bright.

Color sample • Low exposure (due to color wheel cycle); • Rainbow effect can appear around bright on-screen objects.

Screens

- Flexible
- Semi-rigid
- Rigid
- Painted
- Substrate
- · Glass
- Acrylic

C

Screen gain

- The gain is defined by the ratio of the light intensity in the perpendicular direction of the screen compared to the reflection of a standard diffuse screen (MgC03);
- This standard screen has a gain of 1.0:
- The name of this measurement is Peak Gain at Zero Degrees Viewing

Half-gain Angle and Viewing Angle

- The viewing angle that the luminance is half of the luminance in the frontal angle is known as halfgain angle;
- This angle can be measured at horizontal and vertical positions, but this is not common;
- The viewing angle of a screen is defined when the contrast gets smaller than 10:1 in a dark room.

Mirrors

- Used to fold projection image paths
- · Mirrors reduces space necessary for projection;
- · Mirrors increase complexity.

Mirrors Substrate Display Hardware · Glass - Ease of fabrication Infrastructure - Rigidity - Scratch-resistant - Reflective material silver or aluminum Bruno R. de Araújo - Heavy Instituto Superior Técnico Polyester film Universidade Técnica de Lisboa - Polyethylene Terephthalate (PET) - Usually known as Mylar brar@vimmi.inesc-id.pt - Thickness from 12um (0,0005") http://immi.inesc-id.pt/~brar/ - Light Acrylic and Plastic Mirror

Overview

- Projection Geometries (Planar, Cubic, Domes)
- Multi-projection (Arrays and Mounts)
- Field Of View, Inter-reflection
- Hardware Color and Geometry Calibration
- Hardware Warping and Edge-Blending
- Site preparation, Video Transmission
- Control and Automation solutions

Projection and Screen Geometries

- Planes (PowerWall, InfinityWall, Panorama,etc)
- CAVEs
- Irregular (Workbenchs)
- Cilindric, Conics, Torus
- Spherics
- Domes

- Simple solution
- Similar to a big monitor
- Application Port simpler
- Less Immersive
- Medium Audience
- Large Market Choice

10

<section-header> Multi-Projector Structure Screen Frames Projector Mount and Arrays Possible Materials Wood Aluminum Plastic Pipes Special Cares Weight Magnetic Interference Vibrations

Projector Arrays

- Aluminum Frames
- Scalable and Modular
- Stereo or Mono Bays
- 6 DOF projector mounts

Projector Mounts

- 6 DOF projector mounts
- Sub-millimeter control
- Absorb Vibration

Projection Issue: Homogeneous Brightness and Hot Spots

- Oblique Light rays vs Viewing Directio
- Translucent Screen

Planar Mirrors

- Complementing Projector Mount
- Shorter Projection Distance
- WorkBench
- Front Surface Mirrors/First
 Surface Mirror
 - for Polarized Light
 - Frontal reflection
- Reflection over 99.99%
 Plastic Substrates
- EC

Projection Issue: Viewing Angle

- Screens with gain usually have a narrow field if view, losing brightness when viewed from an angle
- Flexible or Rigid Screen

	Gain 3.0 2.0
	1.0
	70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70°
	Gain 3.0
	2.0
	0.5
	70° 60° 50° 40° 30° 20° 10° 0° 10° 20° 30° 40° 50° 60° 70° Viewing Angle
EG	

Projection Issue: Inter-reflection

· Cave: Light from other screens

Redirecting Light: Fresnel Lens

 To guarantee constant angle between viewing direction and protected light rays

How to use Fresnel Lens

- Correct Project rays
- Lens Size = Tile Size
- Minimum Space between tile > 0

Color Calibration

- · Hot spot created by the camera
- Not aligned with projection direction
- No linear response to input
- Luminance more perceptive than chrominance

How to achieve the calibration color

- Eye
- Spectroradiometer
- Digital Camera or Webcam

- · Find a common gamut
- Change gamma curve in the graphic card
- Final
 - Color Lookup Table
 Can be applied via PShader
- Already support by cluster scenegraph such as OpenSG

<section-header><section-header><list-item><list-item><list-item><list-item><table-container>

Control and Automation solutions • Multi-Use Rooms – Light, Media Manager (ex: Creston, Lutron)

Remote Power Control

Image Generation

Luciano P. Soares

Tecgraf - Computer Graphics Technology Group Pontifical Catholic University of Rio <u>lpsoares@tecgraf.puc-rio.br</u> <u>http://www.tecgraf.puc-rio.br/~lpsoares/</u>

Computers architectures

- Mainframes
- Mini-computers
 –Supermini
- Supercomputers

HP3000

Supercomputers

- Vector x Scalar Processing
- Shared x Distributed Memory
- Symmetric x Asymmetric Architecture

14

Memory Access

Distributed Memory

Each processing unit is

indep endent, has its own operating system and memory - Examples: basically Clusters

- Shared Memory (SMP)
 - All processors work over the same operational syst em, all the memory is accessible by any processo
 - Examples: SGI, multicore

Symmetric x Asymmetric

- Symmetric Multiprocessing -Every processor is capable to run the operating system
- Asymmetric Multiprocessing - Dedicated processors for different tasks

Parallelism Taxonomy

- Single instruction, single data stream (SISD)
- Multiple instruction, single data stream (MISD)
- Single instruction, multiple data streams (SIMD)
- Multiple instruction, multiple data streams (MIMD)
- Single Program, multiple data streams (SPMD)

PC Clusters

- Low cost, because they are mainly built of commodity components produced for a mass market;
- Modularity that enables to built a cluster adapted to the user's need regarding components, size or performance;
- Compliance with standards, that favors software and hardware interoperability;
- Upgradeability, since the commodity marked produce new and more powerful devices often;
- Availability of a large range of open source software solutions that enables to customize, if required, a given software layer.

Numerical Processing

- Intel
- AMD
- PowerPC/Cell -Apple-IBM-Motorola -IBM-Toshiba-Sony
- MIPS

Network connection Communication Latency

Network	Latency	
InfiniPath (InfiniBand)	1.31 microseconds	
Cray RapidArray	1.63 microseconds	
Quadrics	4.89 microseconds	
NUMAlink	5.79 microseconds	
Myrinet	19.00 microseconds	
Gigabit Ethernet	42.23 microseconds	1
Fast Ethernet	603.15 microseconds	
	Source: HPC Challeng	je
G		

Graphical Parallelism

- Graphical parallelism can be achieved by:
 - More modern graphic cards
 - (more pixel shaders and fragment shaders)
 - Combining graphic cards (SLI ou Crossfire)
 - Clusters
 - Compositing Hardware

Techniques

- Sample division
- Time division
- Image division
 Static partitioning
- Interleaved
- Dynamic partitioning
 Eye division
- Scene divisionVolume division
- Operational Decomposition

Nvidia pipeline	model
Data Assembler Vbx Thread Issue Geom Thread Issue	Setup / Rstr / ZCull Pixel Thread Issue

High Density Multi GPU

- SLI NVIDIA
- NVIDIA Quadro Plex

Crossfire

Lightning2 & Sepia

• Two systems for *Sort-last*, they have a dedicated hardware for video compositing from several processing nodes.

Display Managers

- Cyviz: active stereo to
 passive stereo and vice-versa
- OpenWARP: Chroma Key,edge-blending, image-warp
- ORAD DVG: several compositing resources, such as time or space
- XDS-1000: Embedded Windows XP interface, PIP, ultra-high bandwidth
- NetPix: All types of multiple display source, PIP

Cluster Synchronization

- gen-lock: projector level
- frame-lock (or swap-lock): graphics processor level
- data-lock: application level

Graphical Clusters

- · Computers that compute graphics together
- Synchronization is mandatory

Tracking

Overview

- Why User Tracking
- Tracking systems characteristics
- Tracking Technologies (Mechanical, Electromagnetic, Acoustic, Inertial, GPS, Optical)
- Infrared Tracking System in Detail

Top View

Perspective View

User Tracking

Technologies:

- Mechanical
- Electromagnetic
- Acoustic
- Inertial
- GPS
- Optical

 example

Tracking systems characteristics

Update rate Latency/Lag/Delay Precision Accuracy Resolution Interference/Distortion Absolute/Relative Range/Working volume Size/Weight Robustness to environmental factors Degrees of freedom (DOFs) Safety Wired/Wireless

User Tracking

Mechanical Tracking Devices:

- Track Position and Orientation (6DOF)
- Mechanical arm paradigm
- Lag of less than 5msec, 300 Hz
- Very accurate

Problems:

Motion constrained by the mechanical arm

Example: Boom by Fake Space Labs

F)

User Tracking

Electromagnetic Tracking Devices:

- Track Position and Orientation (6DOF)
 Measures the strenght of the generated magnetic fields (3 perpendicular wire coils)
- Lag of 5msec

Problems:

 Interference in the presence of other magnetic fields (metal objects, office furniture, CRTs)

Example: Fastrak by Polhemus

User Tracking

Acoustic Tracking Devices:

- Track Position and Orientation (6DOF)
- · Measures the time-of-flight or the phase
- coherence of ultrasonic waves
- Lag of 5msec

Problems:

- Phase coherence systems are subject to error accumulation
- <u>Time-of-flight systems suffer from low</u> update rate, and body occlusions

Example: Arena by ADETTI

User Tracking

Inertial Tracking Devices:

- Orientation (3DOF) conservation of the angular momentum
- Measures angular acceleration, velocity orientation changes using gyroscopes
- Position (3DOF)
 - Measures acceleration, velocity and position changes using accelerometers
- Fast and accurate, and only limited by cabling

Problems:

- Drift between actual and reported values is accumulated over time (can reach 10° per minute) without compensation of drift. With compensation < 1° during 5 days.
- Example: InertiaCube by Intersense

User tracking

GPS Tracking Devices:

- GPS ~ 13m,22m
- DGPS EGONOS (EUROPE) ~2m,3m
- DGPS-OMNISTAR (global) ~2,5cm-10cm (less expensive), or <10 cm (more expensive)

Problems:

- Needs line of sight with more than 2 satellites
- <u>Pseudolites for in-door</u>
- Example: Trimble GPS Pathfinder Pro XRS

n sive)

User Tracking

Optical Tracking Devices:

- Track Position and Orientation (6DOF)
- Outside-in (fixed receivers and mobile emitters)
- Inside-out (mobile receivers and fixed emitters)
- Lag of 20-80msec, 2 mm and 0.1° precision

Problems:

 Line of sight, ambient light and ambient infrared radiation problem

Example: ARTrack by A.R.T

Tracking technologies revised Acoustic - ultra-sound Mechanical Phase cohere Time of flight Inertial Optical Gyroscope Laser Infrared Magnetic Vision-based GPS ~ 13m,22m Kato: ARTool ADETTI: TTS ARTIC,FIRST DGPS – EGONOS (EUROPE) ~2m,3m Hybrid -OMNISTAR ~2.50 <10 cr

User Tracking

Wanted system:

- Without motion constraints
- No drift
- Without error accumulation
- Robust to interference
- Real-time update rate (> 30 Hz)

Chosen: Infrared Tracking System

- Problems: Line of sight and infrared radiation problem
- Minimization: 4 cameras setup and controlled
- environment

Infrared Tracking System

Precise tracking system that:

- Follows an artefact attached to the user's stereo glasses, tracking its position (3 DOF), and enabling the underlying distribuited 3D graphics system to ajust the image of displays in real- time
- 2) Tracks several artefacts used as 3D input devices

Related Work

Commercial Solutions Vicon / ART	 High performance and realibity Prohibitive costs
ARTIC [Dias05] ADETTI	- Coulour Evaluation - Image ROI analysis - Update Rate: 50Hz - Precision: 2.93 mm / 2.58 °
Ptrack [Santos06]	- Divide and conquer quad-tree - Update Rate: 60 Hz - Precision: 4.60 mm / 1.98 ° - Accuracy: 6.50 mm / 2.48 °
ioTracker [Pintaric07]	- Stereo Reconstruction; - Model Fitting - Update Rate: 60 Hz - Precision: 0.05 mm / 0.20 ° - Accuracy: 5.30 mm RMS
C	

Infrared Tracking System

Hardware Setup:

- 4 AVT Firewire Pike Cameras (640x480, 205 fps)
- 4 LED ring array emitters
- 1 Shutter Controller
- · Several retroreflective markers

Tracking Algorithm

· Off-line steps:

1. Camera Calibration: based on [Zhang99], using the DLT [Abdel-AzizKarara71] algorithm, available in OpenCV Library

2. Artefact Calibration

Feature Segmentation Workflow

Feature Segmentation

Occlusion Metric

Based on five rules to label a bounding box as "occluded" or "normal"

and decide which algorithm use	MEFC or HCT)		
Rule	Decision Value			
Bounding box white pixels percentage	≤ 65%			\mathbf{O}
Bounding box width and height sizes difference	≥ 1.5 pixels		(2)	
MECF and bounding box radius difference ≥ 0.9 pixels				
MECF and bounding box area difference ≥ 60 pixels2			(\cdot)	
MECF circle exceeding bounding box limits	≥ 2.5 pixels			(3)
97% of labelling robustness in O	cclusion Metric			
10.06 ms saved per frame				
G			H	124

3D Reconstruction Metric

1) Direct Triangulation

C

- Faster, can lead to numerical instability affecting the system robustness
- 2) Singular Value Decomposition [Golub93]
 - Using each camera's intrinsic (K) and extrinsic parameters (M), stack into matrix A the information for each view i (2D point location – x(i), y(i))
 - Solve the A matrix by SVD, where $A = V \land U$. Retaining the last row of the V matrix, the 3D reconstruction point coordinates (x, y, z) are the singular values of \land

Pose Estimation

[Haralick89]

 Infer a rotation matrix, R and a translation vector, T that transforms the runtime 3D points, denoted by {x₁, x₂, ..., x_N} into the calibrated model points {y₁, y₂, ..., y_N} expressed the following equation, where N is the number of points (3 non-collinear points are required to

estimate a 6 DOF pose) :

 $\sum_{n=1}^{N} w_n \| y_n - R x_n + T \|^2$

 By minimizing this error function a solution the rotation matrix an translation vector can be determined through SVD [Golub93]

Tracking Results

 To assess the system performance and reliability we have assembled a preliminary setup in our Computer Graphics lab at ISCTE-IUL, of size 4 m x 4 m x 2m.

Frame Rate and Latency

- 10 minutes experiment
- While moving 2 artefacts
- Mean frame rate: 24.80 fps
- Mean latency: 40.32 ms

Infrared Tracking System Conclusion

- A complete hardware and software architecture of an infrared-optical tracking system was presented showing some advances in current state-of-the-art
- Requirements fulfilled:

	Requirements Results	
Mean frame rate	25.0 fps	24.80 fps
Mean precision	0.10 mm / 0.10 °	0.08 mm / 0.04 °
Mean accuracy	1.0 mm / 0.50 °	0.93 mm / 0.51°

Improvements should be addressed to solve Hough Circle Transform

HCI for Virtual Reality

Styles of input devices:

- Discrete input devices: Any device which is producing button signals
- button signals
 Continuous input: Gesture based devices like cyber gloves, joysticks, speech recognition, touch pads, etc.
 Hybrid devices: Combination of both discrete and
- Hybrid devices: Combination of both discrete and continuous interaction into a single device. This is the mostly used style: Nintendo Wii

5

0

HCI for Virtual Reality

Text input:

- Standard keyboard
- Chord keyboard
- Contact glove keyboard
- Gesture glove keyboardVirtual keyboard operated with a
- PDA based handwriting
- recognition

HCI for Virtual Reality Graphical input: - Joystick - Trackball - Gyration (3D) mouse - 6 DOF Multimodal: - Eye tracking - Speech - Bio-sensors - Gesture • Other: - Desktop wireless mouse, trackpad, touch screens - Game pad

HCI for Virtual Reality

Graphical input :

Joystick

G

- Trackball: A trackball is a pointing device that is similar to a mouse turned upside down
- Gyration Mouse: A gyration mouse can be operated in the air instead of a desktop

Spaceball

Spacemouse

- 6DOF input
- They detect the slightest fingertip pressure applied to them and resolve the pressure into X, Y, and Z translations and rotations
- This provides interactive 6DOF control 3D graphical objects
- <u>http://www.3dconnexion.com/index.php</u>

http://www.inition.co.uk/inition/products.php

HCI for Virtual Reality

Ascension Wanda

- 6DOF input
- Joystick
- <u>http://www.ascension-tech.com/</u> products/wanda.php

Hornet

Hornet is a wired input device designed to house the sensors of electromagnetic tracking systems like, e.g. Polhemus.

HCI for Virtual Reality

Opti-Hornet

Opti-Hornet is an additional wireless input device with characteristics comparable to Hornet. Attached wings with reflectors for optical tracking systems plus radio communication for the buttons supplement the functionality.

HCI for Virtual Reality

Nintendo Wiimote

- 11 buttons (Left, Right, Up, Down, Minus, Plus, One, Two, Home, A, B - Trigger)
- IR Camera Sensor (at front): detects 4 x 3D points, but only with 2DOF
- Rumble (vibration)
- Speaker (4200Hz)
- 5-6DOF:
- - Rotation: Pitch (local xx'), Roll (local zz'). NO Yaw (local yy') without infrared activated Translation: Unit acceleration (x, y, z) + Magnitude
- (Force)

Multimodal HCI for Virtual Reality

- · Eye tracking

Multimodal HCI for Virtual Reality

Eye tracking

- Electro-oculography (EOG)
- Video-based

3

000

6

Multimodal HCI for Virtual Reality

Speech

- Command & control
- Can be used to start, pause and stop the simulation, control the navigation in VR, and choose gadgets
- Microsoft SDK supports several languages (Portuguese, English, Spanish, Japanese, etc.)
- Commands are interpreted using XML format

	Spee	ch Command & Control
Scenario		Call Anoop Gupta Call Anoop Gupta?
Background	Grammar Lexicon Frontend Acoustic Model Search	sil k aa I aan uwp g uw p t ax sil call Anoop Gupta Finds the highest probability match in the grammar

Run-time architecture with SR and TTS datapath

Multimodal HCI for Virtual Reality

Gesture

- Can be used to perform simple actions
- · Invariant to rotation and scaling
- · Based on a networked Gesture Server (client-

Multimodal HCI for Virtual Reality

Bio-sensors - EEG

- Electroencephalography (EEG) is a technique of exploration of the electrical activity of a brain based on measurements of electric potentials generated by neurons
- Used in BCI Brain-Computer Interface

Multimodal interfaces

Bio-sensors - EMG

- Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation.
- EMG is performed using an instrument called an electromyograph, which detects the electrical potentials generated by muscle cells when these cells contract

Multimodal interfaces

Bio-sensors - EDR

 Electrodermal response (EDR) is a method of measurement of the changes in the resistance of the skin usually resulted from varying emotional states. This technique measures the skin's conductance between two electrodes, which are small metal plates that apply a safe, imperceptibly tiny voltage across the skin

Audio

Bruno R. de Araújo

Instituto Superior Técnico Universidade Técnica de Lisboa <u>brar@vimmi.inesc-id.pt</u> <u>http://immi.inesc-id.pt/~brar/</u>

Audio

Sound Localization Perception:

- Lord Rayleigh's *Duplex Theory*:
 Inter-aural Time Difference (ITD).
 Inter-aural Level Distance (ILD).
- Pinna Filtering (Batteau): due to the ear's morphology, a sound arrives to it with different distortions, depending on its position

• Other Clues:

- Movement of the head
- Visual confirmation and disambiguation

Early echo response and reverberation

Audio

Sound Auralization:

- Auralization is the concern of creating the sensation of spatial sound.
- Adrian Willaert XVIth century's Antiphons.
- "Basic Principles of Stereophonic Sound" (William Snow): sound auralization can only be achieved with at least 2 speakers (depending on dimensions of the hall).
- Two major approaches: binaural and fixed set of speakers
- Implementation of such systems must take special care with hall reflections and occlusions

Audio

Binaural Techniques:

- · Headphones and tracking system.
- 6 Degrees-of-Freedom (DOF).
- · Low cost.
- Pinna Filtering:
 - Requires previous filtering of sounds to simulate the effects of the pinna.
 - Head Related Transfer Functions (HRTF) represent a transfer function of a filter with the same impulse response than the pinna.
 - Each person has his own HRTF.
- 👝 Inapt for collaborative environments.

Audio

- Fixed Set of Speakers Techniques:
- · More comfortable and, usually, of better quality
- · Harder to implement due to reflections and occlusions, and more expensive
- Vector-Based Amplitude Panning (VBAP) Techniques:
- They use vector algebra for assigning to each speaker a different amplitude for a sound
- Some posterior corrections were made to this model (Speaker-Placement Correction Amplitude Panning and Multiple Direction Amplitude Panning)
- Wave Field Synthesis:
 - Huygens Principle states that any point of a front of a wave can be represented by secondary wave sources
- Large (and expensive) array of speakers.

Commodity 3D Sound:

- Multichannel technologies:
 - Planar configurations: 7.1 surround sound.
 - Multi-planar configurations: 10.2 (2 planes), 22.2 (3 planes).

Audio

- Audio libraries:
 - Allow the 3D positioning of sound sources and the listener. Handle the sound sent to speakers, accordingly to their topology.
 - Free libraries: DirectSound3D and OpenAL (Open Source)
 - Commercial libraries: FMOD Ex Sound System

Audio

Audio Libraries:

- Free libraries (DirectSound3D and OpenAL): Low-level libraries that allow simple operations, such as the positioning
 - of sound sources and listener In virtual environments with many sound sources, the programmer needs to manage the limited PCM buffers of the sound cards
 - Open Source nature of OpenAL makes it the preferred choice for custom sound kernels

FMOD Ex Sound System:

- Gaming sound library with geometry processing, for sound reverberation and occlusion effects
- Spatial organization, sound prioritization and sound mixing for managing hardware resources
- Internal DSP functionality for sound pre-processing In Windows, it uses DirectSound3D for its final output

Software for Immersive Environments

Alberto Raposo

Tecgraf - Computer Graphics Technology Group abraposo@tecgraf.puc-rio.br http://www.tecgraf.puc-rio.br/~abraposo

Graphical Parallelism

- Graphical parallelism can be achieved by:
 - Modern graphic cards
 - (more *pixel shaders* and *fragment shaders*)
 - Combining graphic cards (SLI ou Crossfire)
 - Clusters
 - Compositing Hardware

- Sound source as a scene graph node
- Map node, for reverberation and occlusion effects

Audio Implementation Example (Scene Graph):

During the simulation step

FMOD Ex Sound System

Client/Server audio simulation

- Sound source pose are updated
- The server uses the current listener position and step time to advance the simulation

Audio

The server sends new audio state to all clients for data consistency

Techniques

- Sample division
- Time division
- Image division
 - Static partitioning
 - Interleaved
 - Dynamic partitioning
- Eye division
- Scene division
- Volume division
- Operational Decomposition

rvey and Performance Analysis of Software Platforms for Interacti Based Multi-Screen Rendering – Staadt, Walker, Nuber, Hamanr

Graphics Data Distribution in Multi-Projection Systems

network

slave #n

client ppl/cation, I/O network server #2 server #3 rendering server #3 rendering server #1 server #3 rendering

Graphics Visualization in Multi-Projection Systems

Specially for for client-server distribution It's a sorting problem:

Sort-First Sort-Middle Sort-Last

Sources:

- Cinerealismo em Arquitecturas Paralelas de Uso Geral João Pereira
 A Sorting Classification of Parallel Rendering Molnar, Cox, Elisworth e Fuchs
- Sort-First Parallel Rendering with a Cluster of PCs Samanta, Funkhouser, Li e Singh

Sort-First

• The visualization area is divided in rectangles

slave #2

Source: A Survey and Performance Analysis of Software Platforms for Based Multi-Screen Rendering – Staadt, Walker, Nuber,

- Graphics primitives are randomly distributed through cluster nodes, which find whose view volumes they intersect
- Graphics primitives are redistributed for the nodes dedicated to those view volumes

Sort-Last

- Graphics primitives are randomly distributed through cluster nodes, that perform 3D pipeline transformation and rasterization
- Image fragments (R, G, B, A, Z) are sent to the dedicated nodes to update their frame buffers

OpenSG

Syzygy

Source

- · University of Illinois
- · Scene Graph: Myriad
- Client-Server or Master-Slave distribution
- Audio and device support
- C++ or Phyton
- · Multi-platform
- Illinois Open Source License

/www.isl.uiuc.edu/syzygy.htm

Sort-first and sort-last C++ Multi-platform LGPL License http://opensg.vrsource.org/

German Institution (IGD) Own Scene Graph

Client-Server distribution

OpenGL Performer

• OpenGL Performer[™] is a powerful and comprehensive programming interface for developers creating real-time visual simulation and other professional performance-oriented 3D graphics applications

VRJuggler

- Middleware for VR application development
- Supports different projection geometries
- Master-Slave architecture and
- distribution
- Scene Graph: OpenSG or OpenSceneGraph
- 3D Audio
- Input distribution and synchronization (buggy behaviour) with Net Juggler and Cluster Juggler
- C++, Python, Java
- Multi-platform
- LGPL license
- www.vrjuggler.org

Avango

- · Based in a shared scene graph
- · Supports different projection geometries
- · Supports data replication

/www.avango.org/

· Based in OpenGL Performer

Diverse

- Middleware for device independent VR application development
- · Supports different projection geometries
- Supports data replication
- · Based in OpenGL Performer

/diverse-vr.org/

OpenGL Multipipe

- OpenGL API with resources for the real-time compositing of images in multi-projection systems
- Client-server distribution
- Sort-first and Sort-last for cluster visualization
- Automatically detects the best way to parallelize the graphical resources
- Supports different operating systems www.sgi.com/products/software/multipipe

/www.openmask.org

FlowVR

- Middleware for VR application development, based in data flows and modules which communicate
- Daemons handle the data transfer between modules
 - Easy integration in high performance computing clusters
- Supports data replication
- /flowvr.sourceforge.net/

OpenMask

31

Commercial Tools

- Virtools
- CAVELib
- IC:IDO
- DeltaGen
- VGP
- Avalon
- Basho
- Covise

- Developed at EVL (Electronic Visualization Lab) for the first CAVE
- Originally for SGI computer clusters
- Several examples available
- Data replication

http://www.vrco.com/CAVELib

Virtools

- Very used by the industry and game developers;
- Has a powerful behaviors tools;
- Virtools 3D Life Player;
- Very easy to use.

DeltaGen

- Intuitive Interface and interaction with CAD (WIRE, Catia, Parasolid, Pro/E, IGES, JT, STEP, VDA)
- Optimized for visual effects:
 - reflections
 - textures

www.realtime-technology.de/

• RTT Powerwall for clusters

IC:IDO

- Intuitive Interface coupling with CAD tools (Catia, Unigraphics, Autocad, Pro/ENGINEER, Solid Designer, Intergraph e Nemetschek)
- · Optimizations for Massive models

Avalon

- API to develop application in X3D/VRML
- Extensions X3D/VRML
- OpenSG
- 3D Sound

www.zgdv.de/avalon/

Basho

- Retained mode
- AVANGO e Performer
- Several rendering techniques
- · Image Compositing in cascade (2 by 2 nodes)

cg.inf.fh-brs.de/basho.php

Covise

- Data-flow model distributed in cluster
- Colaborative solution
- Volume rendering
- · Fast sphere rendering

/www.hlrs.de/organization/vis/covise/

Multigen Paradigm

- · Extends the Multigen Vega library, a visual simulation toolkit
- Master/slave
- Default configuration is to transmit input events. But this can be disabled to accept data from a simulation host.
- Uses TCP and UDP (via the ACE framework)

Cases

- Caverna Digital at University of São Paulo, Brazil
- Beckman Cube / ALICE at UIUC, USA
- Grimage at INRIA, France
- Tecgraf PUC-Rio, Brazil
- (CENPES and Others) at Petrobras, Brazil

Luciano P. Soares

Tecgraf - Computer Graphics Technology Group Pontifical Catholic University of Rio lpsoares@tecgraf.puc-rio.br http://www.tecgraf.puc-rio.br/~lpsoares

- Caverna Digital at University of São Paulo, Brazil
- •5 sided CAVE
- •Projectors: 5 CRTs (active stereo)
- •Tracking: Eltromagnetic
- •Installed: 2001

Tracking in Caverna Digital

Electro Magnetic

– Emiter in the ceeling– Around 3m coverage

- Device with butons

JINX

- X3D Browser
- Clusters
 - Commodity PC (Linux)
 SGI (Irix)
- Based in MPI and Pthreads
 Also supports Sockets
- Internaly uses XML
 For configuration file
 - Transfer data from devices

Beckman Cube / ALICE Integrated Systems Laboratory/UIUC,USA

•6 sided CAVE

- •Projectors: 6 CRTs (active stereo)
- •Tracking: Eltromagnetic wireless
- •Installed: 2001

Beckman Cube

Grimage / INRIA Grenoble - France

•Power Wall

 $\bullet Projectors: 16 \ DLP \ (\text{Possible Passive Stereo})$

•Tracking: Color Cameras

VTK/ FlowVR / FlowVR Render

Tecgraf – PUC-Rio Rio de Janeiro - Brazil

- Single Stereo Projection
- Projectors: 2 DLPs (passive linear stereo)
- •Tracking: Camera tracking
- •Installed: 2007

CENPES / MC

- •PowerWall
- •Projecotors: 2 DLPs (active stereo)
- •Tracking: Optical
- •Installed: 2006 (Original CRT installation 2001)

Future NVC Petrobras/CENPES

Cases

• Leme at Instituto Superior Técnico, Portugal

Bruno R. de Araújo Instituto Superior Técnico Universidade Técnica de Lisboa <u>brar@vimmi.inesc-id.pt</u> <u>http://immi.inesc-id.pt/~brar/</u>

LEMeWall at Instituto Superior Técnico, Portugal

PowerWall
Projectors: 12 DLPs (mono)
Tracking: Laser pointer + US Sensors + Optical
Installed: 2005

LEMeWall

- Instituto Superior Tecnico, Technical University of Lisbon
- TagusPark Campus
- LEMe: Laboratory for Excellence in Mobile and Ubiquous Computing
- Retro-projection system using 12 DLP projectors
- Intelligent Environment enriched with a 5.1 Sound System, Microphones, US Sensor Network and Network Cameras for Optical Tracking
- PC Cluster of 13 Computers dedicated to graphics running Gentoo Linux Distribution
- Network of 6 Computers for interaction and applications

Display Characteristics

- Flexible Screen
- Screen Size: 4 m X 2,25 m
- 8,5 MPixeis (native) to 15 MPixeis (ext)
- Mono 4 by 3 configuration Array
- Graphic Cluster Boards Nvidia Quadro FX 3000 4:3

<section-header><section-header> Hardware Cluster 12 Workstation HP xw4108 Pentium 4 (800 FSB) 3.00GHZ Custer Server Workstation HP xw8008 Pentium 4 Xeon 3.06 GHZ NVIDIA Quadro FX3000 (AGP 8x) Custer Server Workstation HP xw8008 Pentium 4 Xeon 3.06 GHZ NVIDIA Quadro FX3000 (AGP 8x) Custer Server Workstation HP xw8018 Pentium 4 Xeon 3.06 GHZ Sound Gystem (AudioPhysic J Denon) Pertiph, channel + 1 central Subworeir Yumer Xeon 306 Partin Zoom Face Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Subworeir Yumer Xeon 306 Partin Zoom Face Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Subworeir Yumer Xeon 306 Partin Yama Actor Scatter Scatter Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Subworeir Yumer Xeon 306 Partin Yama Actor Scatter Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Subworeir Yumer Xeon 306 Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Subworeir Yumer Xeon 306 Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph, channel + 1 central Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph Channel + 1 central Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph Channel + 1 central Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph Channel + 1 central Partin Yama Actor Scatter (AudioPhysic Denon) Pertiph Channel + 1 central Pert

LEMeWall Simulator

- · Projector and Array
- Screen and Wall Distance Computation

Projector Array and Mounts

- Aluminum Frame for 12 projector (4m x 2,25m x 0,5 m)
- Modular Array ready for future extension

6DOF Aluminum Mount Sub-millimeter precision Two floor design (1T+1R)

Infra-Struture Projection Setup

- Cooling System
- Light Control
- Geometric alignment

Java C++ OpenGL

Color calibration

- Non-Rigid Screen
- Color can shift among similar projectors
- Camera Based Gama Correction Software

Automation and Control

- Projectors connected to computers via VGA +Serial
- Linux Cluster Access (SSH, Rsync)
- Scripts for cluster control and Demo Launch
- Python based Tool (GUI GTK)
 - Avoid KVM HW to access computers
 - Script Launcher
 - Centralized Graphical Projector Control
 - Computer Cluster Monitoring (CPU,RAM,Network)

Application and Rendering Software

- Several VR system setup :
 - VR Juggler, OpenSG, Chromium, Jinx, Syzygy
- LEMeWall VR MiddleWare
 - OpenSG (Windows/Linux Applications)– Chromium (OpenGL Wrapper, Windows/
- On Going: New VR Support Framework

 OpenIVI: OpenSG+OpenTracker+OSGA+MM

Demos Running at the LEMeWall

LemeWall Interactions

- Interaction Metaphors
 - Stroke based interaction (laser/PowerWall 3DPen Mouse/Pen)
 - Tracking/Body Gesture based interaction
 - Voice based interaction
- Input Devices
 - Laser
 - Mobile Computing (PDA)
- New User Interface (Advanced GUI)
- Multi-user and Multimodal Framework

- Stroke
- Line / Sketch
- Path
- Gesture
- Main metaphors
 - Crossing
 - Lasso selection
 - Pointing
 - Circular Menus

GUI for Large Scale display

Circular Menu

- Only 2 LevelsGate Activation by
- Crossing – Lasso bring up the context menu
- Menus belong to an user

Functionality using Menu

- Annotations
- Navigation
- Shape CreationTransformation
- Rendering and Light

Options

Supported Input Devices Laser Pointe Enable Stroke Interaction Supports multi-users Large Area tracked One-One relation with the content PDA Allows us to share data

- Allows us to shall could
 Sketch, Images, Text
 Other devices
- Mouse, Pen3D, Tablet
 PC

Tracking Based Interaction

Two arm tracking

- Gestures
- Pointing
- Composition with voic

Functionality

- Navigation
- Dragging objects
- Scaling

G

- Rotation

Multimodal Interaction

Further enhance the interaction

- PDA + Pointing
- Voice + Menu
- Voice + Pointing
- Tracking + Voice

Examples

- Delete an object using : "Delete This"
- Open a navigation menu and select
- an option with: "Turn left" - Enter scale mode with "Begin Scale"
- and use Body Tracking to scale the object

Multimodal and MultiUser

Multimodal interaction reacts to an Knowledge Base System:

Actuators – Rules with preconditions that represent sequences of interaction Preconditions

Token, Context, Objects

Inference system.

When preconditions are satisfied, the correspondent actions are activated. Ambiguities are solved using a More Recent Token politic

Multi-User Support

- Can take advantage of several modalities
- Several devices supported Uses the knowledge definition for support

Cases

Lousal at Fundação Frederic Velge, Grândola, Portugal

Miguel Dias MLDC - Microsoft Language Development Center Miguel.Dias@microsoft.com http://www.adetti.pt/

Joaquim A. Jorge, Bruno Araújo Instituto Superior Técnico Universidade Técnica de Lisboa

jaj@vimmi.inesc-id.pt http://web.ist.utl.pt/jorg

Lousal at Fundação Frederic Velge, Grândola, Portugal

- · 4 sided CAVE Hollowspace (CaveH)
- · 12 DLP Projectors with passive stereo INFITEC
- Optical Tracking
- Installed:
- End of 2007

Live Science Center at Lousal

- Center for the dissemination of Science for the population
- At Minas do Lousal closed during the eighties
- Fundação Frederic Velge is the owner
- Project co-funded by MCTES and FEDER for the Centros de Ciência Viva Network
- Under Relousal

Live Science Center at Lousal

The *Mine of Science – Live Science Center of Lousal* will be part of the already existing Portuguese Network of Live Science Centers.

The general objectives of this network have been defined by the National Agency for Scientific and Technological Culture:

> Education for Science and Technology Divulgation of Science and Technology

The Centers should be designed for a large-spectrum audience (e.g., age, education, social or geographic origin, etc.)

Live Science Center at Lousal

"Exploring Science, Exploiting Knowledge"

CaveH of Lousal in Detail

- First large scale immersive virtual environment in Portugal
 - U topology, retro-projected: 5.6 m x 2.7 m x 3.4 m
 - Wide field of view: more than 180°
 - 12 x single chip DLP™ projector with SXGA+ (1400x1050)
 High resolution: up to 8 295 000 pixel in each stereo pair
 - INFITEC Stereoscopy

CaveH projection studies

Projection Studies

- CaveH
- 4 Sided extended (Overlapping and 90°)

Preliminary Tests at Factory

Main Objectives

- Simulate realistic mining procedures
- Information about geology and mining
- Entertainment with mining environments
- Academic research and education
- Service to the Portuguese industry

CaveH in Operation

• High-end projection systems:8M pixel at 60 Hz

60 Hz
State-of-the-art large semi-rigid screens
Distributed 3D Audio "surround" 7:1
Computer cluster and Gigabit ETHERNET
High-performance computing server and 3D graphics: over 3M poly at 60 Hz
In-house developed data synchronization middleware ensuring data-lock and framelock in master-slave distribution
In-house developed high-res optical tracking

Projectors

Technology = Single chip DLP Resolution = SXGA+ (1400 x 1050 pixels) Brightness = 4000 Lumens

Contrast =1:2000 Infitec stereo

<section-header> Computing Cluster 6 dual core Graphic Nodes 1 Audio/Video Node 1 Server Node (16 CPUS) 1 Access Node 1 KVM (Keyboard, Video and Mouse) 1 Cluster Switch 2 Displays

VR Middleware Approach for CaveH

- SceneGraph: OpenSceneGraph
- C++
- 3D Audio: FMOD music & soundeffects system (www.fmod.org)
- Our own graphics data distribution system supporting both Master-Slave and Client-Server: ADE – Abstract Distributed Engine
- No client-server visualization distribution technique
 ADE guarantees Data-lock over the replicated scenegraphs across all Cluster nodes
- Microsoft Windows platform
- Other external libraries to be presented later

CaveH Middleware Requirements

- · Produce high complex realistic real-time images;
 - GPU
 - Global and local ilumination
 - Cinematic and dinamic colision detection - Rigidy body dynamic simulation
- Spatialized 3D Audio
- Precise synchronization and 3D data consistency among computers
- Latency and bandwidth control (sustained 60 Hz)
- Content
- 3D Modeling (supporting several 3D formats)
- Character animation (key-frame and dynamic)
- scripting - Immersive Virtual Environments authoring

External Development Tools

- OpenSceneGraph (OSG)
- OpenGL
- Cal 3D
- Lua
- GL-SL
- Ageia PhysX
- FMOD Ex Sound Server
- MPI

Internal Development Tools

- MX-Toolkit
- Abstract Distributed Engine ADE

Detailed CaveH Middleware Architecture

Newton Physics

Selected a robust and mechanical precise physics engine: Ageia PhysX (free license)

Supports rigid and soft bodies, joints, height fields, fluids, cloth particle systems, vehicles, and character controller

Internal structure:

- static scene elements), cinematic (for m (subject of Newton physics simulation) They can be physically linked through joints (Ageia PhysX supports 9 p joints and an additional 6DOF-customizable joint) They can have many shapes. The library offers many representations: capsule, plane, triangle meshes, and convex meshes The shapes must have a material, which defines the shape's static and (isotropic and anisotropic) friction, and its restitution

Collision Detection and Response

- The collision detection is performed by the PhysX API
- Cinematic collision response:
 - Collide-And-Slide algorithm
- Dynamic collision response:
 - Dynamic Object –Dynamic Object: PhysX API solver
 - Avatar-Dynamic Object:
 - Collide-And-Slide algorithm for the avatar
 - apply an impulse, using a derived force, to the contact point of the dynamic object

Newton Physics Engine

- · Three entity nodes: static, cinematic and dynamic
- · At each simulation step:
 - The cinematic nodes and the character poses are updated (scene graph update transversal).
 - The server applies the forces on dynamic entities, and calculates the entity and character collisions.
 - Next, it sends to client nodes the updated character and dynamic entities poses.
 - The clients propagate new state changes to the respective entity nodes.

Projection and CaveH Middleware Configuration

<image>

Content Authoring

- 3D Modelling
- 3D Studio, Maya, Blender
 Character Animation (Cinematic and Hierarchical)
- Scripting Languages
- Lua

G

- 3D Scenario Development (Maps)
- 3D Audio

Content Authoring

- 3D Studio Max for model and map (3D scenario) geometry creation as well as characters and animations
- GtkRadiant is used for content integration
 authoring

Scripting Language

- Allows programming behaviors for certain objects/entities, in a completely independent environment
- The used scripting language is **LUA** (from PUC Brasil)
- Scripts are integrated with the application using the node kit osgLua

Content Authoring Flow

